

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

EVOLVED DESIGN, INTEGRATION, AND TEST OF A
MODULAR, MULTI-LINK, SPACECRAFT-BASED

ROBOTIC MANIPULATOR

by

Jerry V. Drew II

June 2016

Thesis Advisor: Marcello Romano
Second Reader: Josep Virgili-Llop

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2016

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
EVOLVED DESIGN, INTEGRATION, AND TEST OF A MODULAR,
MULTI-LINK, SPACECRAFT-BASED ROBOTIC MANIPULATOR

5. FUNDING NUMBERS

6. AUTHOR(S) Jerry V. Drew II

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis reports on the evolved design, test, and integration of a robotic manipulator consisting of
multiple modular links, which enable the reconfiguration of the manipulator system for differing mission
requirements without constructing unique hardware for each experimental campaign.

The evolved design replaced custom components with commercial components to improve
performance, standardize hardware, and reduce assembly time. Additional links were constructed and
assembled into a four-link manipulator capable of moving its end-effector without imparting motion to the
base spacecraft. Each joint can be controlled independently and provides unique telemetry data via Wi-Fi.

A mathematical model of the system was implemented, and the kinematic and dynamic behaviors
calibrated, resulting in confirmation of the validity of the modular link manipulator concept. A software
code based on this model, the Spacecraft Robotics Toolkit (SPART), was published as an open-source
kinematics/dynamics and control framework for use by the spacecraft robotics community. Future research
will investigate further upgrades, manipulator control and use in operational scenarios.

14. SUBJECT TERMS
spacecraft, robotics, kinematics, dynamics, multi-body mechanics

15. NUMBER OF
PAGES

177

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

EVOLVED DESIGN, INTEGRATION, AND TEST OF A MODULAR, MULTI-
LINK, SPACECRAFT-BASED ROBOTIC MANIPULATOR

Jerry V. Drew II
Captain, United States Army

B.S., United States Military Academy, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2016

Approved by: Marcello Romano
Thesis Advisor

Josep Virgili-Llop
Second Reader

Garth Hobson
Chair, Department of Mechanical and Aerospace Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis reports on the evolved design, test, and integration of a robotic

manipulator consisting of multiple modular links, which enable the reconfiguration of the

manipulator system for differing mission requirements without constructing unique

hardware for each experimental campaign.

The evolved design replaced custom components with commercial components to

improve performance, standardize hardware, and reduce assembly time. Additional links

were constructed and assembled into a four-link manipulator capable of moving its end-

effector without imparting motion to the base spacecraft. Each joint can be controlled

independently and provides unique telemetry data via Wi-Fi.

A mathematical model of the system was implemented, and the kinematic and

dynamic behaviors calibrated, resulting in confirmation of the validity of the modular

link manipulator concept. A software code based on this model, the Spacecraft Robotics

Toolkit (SPART), was published as an open-source kinematics/dynamics and control

framework for use by the spacecraft robotics community. Future research will investigate

further upgrades, manipulator control and use in operational scenarios.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. RESEARCH MOTIVATION ...1
B. STATE OF THE ART ...2

1. An Overarching Context ...2
2. Spacecraft Based Manipulators in Experiment and

Application..5
3. Efforts at the Naval Postgraduate School (NPS)

Spacecraft Robotics Laboratory (SRL)10
C. RESEARCH OBJECTIVES ...13

II. DESIGN EVOLUTION ...15
A. REQUIREMENTS ...15
B. MODIFIED DESIGN ..15

1. Retained Hardware ..15
2. The Link Structure ..16
3. Hardware Upgrades...27

III. ASSEMBLY DOCUMENTATION ..35
A. INTENT OF THE ASSEMBLY DOCUMENTATION

SECTION..35
B. BUILDING A LINK ..36

1. The Servomotor Cable Connectors ..36
2. The Encoder Cable Connector ...39
3. The Torque Sensor Wiring ...42
4. Battery Connector and DC/DC Converter44
5. The Arduino Subassembly ..44
6. Mounting the Components to the Structure45

IV. DATA ARCHITECTURE...59
A. OVERVIEW ...59
B. CONCEPT OF OPERATIONS ..59
C. DATA FLOW ...60

1. The D-Link Interface ...60
2. The Driver Interface and the Arduino Due Code62
3. The Simulink Model ..64
4. The VICON Interface ..68
5. Potential for an Ad Hoc Network ...70

 viii

V. KINEMATICS AND DYNAMICS CALIBRATION71
A. GENERAL OVERVIEW ..71
B. KINEMATICS OVERVIEW ..71

1. Definition of Terms ..71
2. The Base ..72
3. The Joints ..73
4. Rotation and Joint Transformation Matrices73
5. Denavit-Hartenberg (DH) Parameters75
6. Link Transformation Matrices ...77

C. DYNAMICS OVERVIEW ..77

1. Twist Propagation Matrices (ijB and 0iB)78

2. Velocity Transformation Matrix 0()P and Twist

Propagation Vector ()mp ..78

D. KINEMATIC CALIBRATION ..80
E. DYNAMIC CALIBRATION ..81

1. Overview ...81
2. Inertia Matrices ..82
3. Mass Matrices ...83
4. Generalized Inertial Matrices ...83
5. Determining the Base-Manipulator System State (q)84

6. Inducing Variation, the Dynamic Calibration Proper85
F. ANALYSIS ...85

VI. CONCLUSION ..89
A. SUMMARY OF WORK..89
B. FUTURE WORK ...89
C. RESEARCH SIGNIFICANCE ...93

 ix

APPENDIX A. SPARKFUN HX711 LOAD CELL AMPLIFIER OPEN-
SOURCE HEADER FILE [51] ...95

APPENDIX B. SPARKFUN HX711 LOAD CELL AMPLIFIER OPEN-
SOURCE C++ SOURCE CODE FILE [51] ..97

APPENDIX C. ONBOARDLINK.INO ..101

APPENDIX D. MARSMAN_DRIVER_LOAD.CCX ...111

APPENDIX E. VICON_CALIBRATE.M ...115

APPENDIX F. KINEMATICS_SERIAL.M..119

APPENDIX G. DH_RS.M ...123

APPENDIX H. SKEWSYM.M ...125

APPENDIX I. MARSMAN_KINCAL.M ..127

APPENDIX J. X_EE.M ...133

APPENDIX K. MARSMAN_DYNCAL.M..135

APPENDIX L. I_I.M ...139

APPENDIX M. MCB_SERIAL.M ...141

APPENDIX N. GIM_SERIAL.M ...143

APPENDIX O. Q_DOT_FUN.M ..145

APPENDIX P. Q0_MANEUVER.M ..147

LIST OF REFERENCES ..149

INITIAL DISTRIBUTION LIST ...155

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Two Baxter Robots with Different End Effectors. Source: [7].4

Figure 2. Precise Surgical Manipulators. Source: [9]. ..5

Figure 3. Deployment of the original Canadarm from Columbia. Source: [11].6

Figure 4. EFFORTS-1 Floating Via Air Bearings. Source: [13].7

Figure 5. Astronaut Reference Flying Robot (ARFR). Source: [15].8

Figure 6. ETS-VII. Source: [17]. ...9

Figure 7. DYMAFLEX with Deployed Antennas. Source: [19].10

Figure 8. The First SRL Multi-link Manipulator. Source: [20].11

Figure 9. Complete Link Assembly. Source: NPS SRL. ...12

Figure 10. The Floating Spacecraft Simulator (Without Reaction Wheel).
Source: NPS SRL. ..13

Figure 11. Five Pieces of the Main Link Structure with Substrate.17

Figure 12. Five Pieces of the Main Link Structure without Substrate.17

Figure 13. FHA-8C-30-12S17b-E Servomotor. ..18

Figure 14. DEP-090-09 Servomotor Driver. Source: [25]. ...19

Figure 15. FUTEK TFF400 Torque Sensor, Isometric and Rear Views. Source:
[26] ...20

Figure 16. Wiring Diagram for FUTEK's TFF400 Torque Sensor. Source: [30].21

Figure 17. The Inspired Energy NH2054 Li-Ion Battery. Source: [27].22

Figure 18. Discharge Curve of 14.4V Li-Ion Battery. Source: [27]23

Figure 19. Traco Power 75-2415WI DC/DC Converter. Source: [28].24

Figure 20. Arduino Due Microcontroller. Source: [31]. ...25

Figure 21. LinkSprite RS232 Shield. Source: [32]. ..25

Figure 22. Dantona 3.6V Battery. ...26

 xii

Figure 23. Air Delivery System Components. ..27

Figure 24. Both sides of the SparkFun Load Cell Amplifier. Source: [33]28

Figure 25. Arduino Wi-Fi Shield. Source: [35]...31

Figure 26. Voltage Regulator. Adapted from [36]. ...33

Figure 27. “Shoe” Developed Using the Free Microsoft 3D Builder Application......34

Figure 28. Servomotor Cabling Schematic. Source: [25]. ..36

Figure 29. Servomotor with Stock Connectors. ..37

Figure 30. Motor Lead Connector Layout (Units in mm). Source: [39].38

Figure 31. Motor Cable Wiring with 4-Position J2 Connector.39

Figure 32. Pinout of Encoder Cable with Stock Connector. Source: [39].40

Figure 33. Replacement Connector Pieces Alongside the Encoder Cable.41

Figure 34. Pinout of Servomotor Encoder Cable with 20-Pin Connector.42

Figure 35. Encoder Cable with 20-Pin Connector and Attached Battery.42

Figure 36. Torque Sensor Wired to the Load Cell Amplifier.43

Figure 37. Block Diagram of the Electrical Power Architecture.44

Figure 38. Torque Sensor Mounted on the Motor Carriage.46

Figure 39. Servomotor Mounted to Outer Plate ..47

Figure 40. Mated Torque Sensor and Servomotor ..47

Figure 41. Circular Bearings for Use on Outer Plate and Outer Bracket.48

Figure 42. The Completed Joint Assembly. ..48

Figure 43. Diagram of the Harmonic Drive Connection Ports. Source: [41].50

Figure 44. Link with Joint Assembly, Mounted Servomotor Driver and DC/DC
Converter..51

Figure 45. Copley Motion Explorer 2 (CME2) Graphic User Interface upon
Initialization. ..52

 xiii

Figure 46. CME2 Control Panel with Disabled Motor Control.53

Figure 47. CME2 Control Panel, Faults Cleared, Jog Enabled.54

Figure 48. Power Architecture Schematic ...55

Figure 49. Data Architecture Schematic ...56

Figure 50. Complete Link Assembly. Source: NPS SRL. ...57

Figure 51. Diagram of the Experimental Setup. Adapted from [42].60

Figure 52. Code Defining Network Parameters, Port Numbers, and MAC
Addresses. ..62

Figure 53. Send/Receive Switch for Link Control. ...64

Figure 54. Breakout of the Data Processing Subsystem. ..65

Figure 55. Breakout of the Checksum Subsystem. ...66

Figure 56. Breakout of the Enabled Subsystem. ...66

Figure 57. Capture Function ..67

Figure 58. Experimental Setup Including VICON Cameras. Source: [44].68

Figure 59. Silver Spheres Serve as Markers for VICON. Source: [44].69

Figure 60. Screenshot of the VICON Tracking Software. ..70

Figure 61. Visual Depiction of the Denavit-Hartenberg Parameters. Source:
[44]. ..75

Figure 62. Depiction of Dynamic Model Vectors: Source: [48].79

Figure 63. Dynamic Calibration Matrix. ...85

Figure 64. MATLAB Results of the Kinematics Calibration.86

Figure 65. MATLAB Outputs of the Dynamic Calibration.87

Figure 66. Sample End Effector from the Yale OpenHand Project. Source: [50].91

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 1. Servomotor and Driver Characteristics. Sources: [20], [25], [26].19

Table 2. Torque Sensor Characteristics. Sources: [4], [20].21

Table 3. ASCII Strings for Due-to-Driver Communication. Source: [25].63

Table 4. Denavit-Hartenberg Parameters. Adapted from [44].75

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF ACRONYMS AND ABBREVIATIONS

A ampere

AAS American Astronautical Society

ADC analog-to-digital converter

Ah ampere-hours

AIAA American Institute for Aeronautics and Astronautics

ARFR Astronaut Reference Flying Robot

ASCII American Standard Code for Information Interchange

CAD computer-aided drafting

ccp complimentary C++

ccx Copley Controls Axis

CLK clock

CME Copley Motion Explorer

COTS commercial-off-the-shelf

DAE differential algebraic equation

DARPA Defense Advanced Research Projects Agency

DAT data

DC Direct Current

DH Denavit-Hartenberg

DHCP dynamic host configuration protocol

DLR Deutsches Zentrum für Luft- und Raumfahrt

DOF degrees of freedom

DYMAFLEX Dynamic Manipulation Flight Experiment Microsat

EFFORTS Experimental Free-Floating Robot Satellite

EtherCAT Ethernet for control automation technology

ETS-VII Experimental Test Satellite 7

EXEC excitation

FSS Floating Spacecraft Simulator

GNC guidance, navigation, and control

GUI graphic user interface

ICATT International Conference on Astrodynamics Tools and Techniques

 xviii

ICRA International Conference on Robotics and Automation

IEEE Institute of Electrical and Electronics Engineers

IP internet protocol

IROS Intelligent Robots and Systems

Li-ion Lithium-ion

LDO low dropout regulator

MAC media access control

MARSMAN Modular Arm Robotic Manipulator

MATLAB Matrix Laboratory

MIT Massachusetts Institute of Technology

NPS Naval Postgraduate School

OEDMS Orbital Express Demonstration Manipulator System

PE protected earth

R resistance

ROTEX Robot Technology Experiment

RS232 Recommended Standard 232

Rx receive

SIG signal

SPART Spacecraft Robotics Toolkit

SRL Spacecraft Robotics Laboratory

SRMS Shuttle Remote Manipulator System

STS Space Transportation System

Tx transmit

TTL transistor-transistor logic

UART universal asynchronous receiver/transmitter

UAV unmanned aerial vehicle

UDP Unit Datagram Protocol

USC University of Southern California

V volt

 xix

ACKNOWLEDGMENTS

There are necessarily many people to thank when one completes a single project

that spans an entire year and multiple areas of expertise.

 First, to Dr. Marcello Romano, my advisor: Thank you for your oversight and

guidance throughout the process. I appreciate all the work you have done over the years

to assemble a state-of-the-art facility and to fill it with high-quality people.

 Second, to my second reader, Dr. Josep Virgili-Llop, who taught me something

new almost every day: I appreciate your patience and your willingness to drag me along

the many different lines of investigation.

 Third, I would like to thank the members of the Spacecraft Robotics Lab and my

classmates in the Astronautical Engineering curriculum, whose help and support over the

last 21 months has been invaluable.

 Most importantly, I need to thank my wife, Meagan, and our wonderful

children—Jerry, Clara, Marian, and Laurel—for their unwavering support. All of this

would not be worth it without you.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. RESEARCH MOTIVATION

The uses of robotics in the modern world are nearly limitless. From

manufacturing applications to high-precision surgery, from unmanned aerial vehicles

(UAVs) to planetary rovers to satellites with manipulator arms, applications for robotics

abound. Within any one of these application areas, specialized areas of investigation

emerge. A roboticist must strive to understand hardware like motors and sensors,

software for control and simulation, the under-lying multi-body mechanics, and the

various techniques for implementing these pieces into a functional system

(mechatronics). In areas that are inherently dangerous or inaccessible to humans, like

outer space, robotic applications are a natural fit.

Since the 1980s, the notion of using robotic servicing satellites to extend the

lifetime of on-orbit assets has generated an increasingly large field of interest. Traditional

satellites continue to be very large and very expensive, typically the result of many years

of substantial investment. During a satellite’s operational lifetime, any number of

electrical, mechanical, thermal, propulsion or structural problems may arise and render it

incapable of performing its mission. A servicing satellite equipped with a robotic

manipulator may be able to correct or mitigate these problems, and this technology has

been demonstrated, most notably in Japan’s Experimental Test Satellite 7 (ETS-7), and

the United States’ Orbital Express mission. Servicing satellites such as these could assist

in the deployment of a stuck antenna or solar panel, the replenishment of an empty

propellant tank, or the stabilization of a tumbling spacecraft [1], [2]. For failed spacecraft

and for other pieces of space junk, a satellite with a manipulator arm could gain control

of the debris and assist its deorbit or tug it to a location where it will not interfere with

active missions.

Among terrestrial manipulators, fixed-based manipulators for use in industrial

applications are the most common type. Over the years, the mechanics and control theory

necessary to operate these industrial systems were adapted for use with spacecraft

 2

manipulators, taking into account the very important consideration that a satellite with a

manipulator cannot be treated as a fixed-base manipulator in all cases. If, for example,

the manipulator is sufficiently large with respect to the base spacecraft, or if the

manipulator moves faster than a given speed, the action of the arm will impart significant

reaction onto the base and vice versa.

To account for this highly nonlinear dynamic coupling, then, the kinematics and

the dynamics of the system must be modeled and simulated numerically to understand

how the system will behave for a given number of manipulator links. Further, since one

cannot simulate all physical effects of the environment (friction forces or sensor noise,

for example), a hardware validation of the model is necessary. Because of the high mass

penalty of putting spacecraft into orbit, it is desirable to launch the smallest satellite

capable of performing a given mission—even if using a smaller satellite means greater

complexity in the dynamical behavior of the system. With this goal in mind, research at

the Naval Postgraduate School (NPS) Spacecraft Robotics Laboratory (SRL) on free-

floating spacecraft simulators with multiple-link robotic arms has been ongoing.

B. STATE OF THE ART

1. An Overarching Context

Space-based manipulators and the experimental models used for development and

simulation have a long heritage, but before discussing the very specific application of a

satellite-based robotic manipulator, a discussion of the definition of robotics and

consideration of the state-of-the art of robotics is useful. The experimental and

operational heritage of the current research effort is discussed, including the early

examples of floating manipulators, manipulator campaigns aboard the Space

Transportation System (STS) and the International Space Station (ISS), the Experimental

Test Satellite 7 (ETS-VII) and Orbital Express missions, and ongoing research efforts

within academia.

In her book, The Robotics Primer, Dr. Maja Matarić, the Vice Dean for Research

at the University of Southern California’s (USC) Viterbi School of Engineering, rigidly

defines a robot as “an autonomous system which exists in the physical world, can sense

 3

its environment, and can act on it to achieve some goals” [3]. While this definition allows

for systems of varying levels of autonomy, Matarić goes on to deliberately exclude

manipulators that are controlled via tele-operation—that is, an operator controls the

manipulator remotely. This exclusion contradicts a reality that is evident in published

literature: the larger robotics community considers tele-operated manipulators as robots.

As evidence, the 2015 Institute of Electrical and Electronics Engineers’ (IEEE)

International Conference on Robotics and Automation (ICRA) and International

Workshop on Intelligent Robots and Systems (IROS), two very prominent conferences,

included multiple papers on tele-operation, particularly as it relates to high-precision

surgery (for example, [4], [5]) but also relating to space operations [6]. Indeed, as a

general observation, the literature of space manipulators (tele-operated or not) proclaims

their inclusion in the field of robotics. Therefore, this thesis keeps with the larger

community in its consideration of tele-operated manipulators as a valid subset of

robotics.

Even highly independent, non-tele-operated robots depend upon a human user for

varying degrees of input (that is, they have varying levels of autonomy). At the more

sophisticated level, Rethink Robotics touts its industrial robot Baxter as “trained, not

programmed” [7]. Baxter is a robot that specializes in pick-and-place tasks, but unlike

other robots, a user can reconfigure Baxter to perform a new task simply by manually

repositioning its manipulators in the desired sequence [8]. If an object is out of its

expected place—as it moves along a conveyor belt, for example—a camera mounted in

Baxter’s wrist will seek the misplaced object and automatically adjust its behavior, and if

a human co-worker gets in the way, Baxter will sense the collision and safely cease

operation [8].

Two versions of the Baxter robot with different end effectors are shown in their

industrial setting in Figure 1. Industrial robots offer two sharp contrasts to the robotics

found on spacecraft. First, Baxter has a fixed base, so motion of its manipulators does not

impart a reaction motion by the base. Second, the complexity of Baxter’s behavior is not

an option when dealing with a manipulator on an unmanned satellite because there is no

human nearby to “teach” it. Since autonomous operation of a satellite-based robotic

 4

manipulator is a highly sophisticated endeavor, most spacecraft robotic manipulators

have historically been operated via tele-operation.

Figure 1. Two Baxter Robots with Different End Effectors. Source: [7].

Earth-bound tele-operated robots, like Baxter and other more autonomous earth-

bound manipulators, are (not surprisingly) capable of higher precision and higher

complexity functions than their space-bound counterparts. In particular, the field of

surgery via tele-robotics has flourished, but efforts are underway to make the process

more autonomous. The manipulators pictured in Figure 2 employ as end effectors a 6 mm

grasper and a 10 mm pair of scissors to remove simulated tumors from simulated tissue

(left) and to remove simulated damaged skin (right) [9]. These manipulators are

programmed by a technique that “involves observing human-operated demonstrations

into motion sequences and transition conditions” and are capable of detecting the

simulated tumors and dead skin and acting accordingly [9]. Like the manual repositioning

of Baxter, learning by observation presents intriguing possibilities for the field of

spacecraft robotics, but because of the dynamic behavior of a spacecraft-manipulator

system, such a system will likely never be able to achieve the precision of surgical

robotics.

5

Figure 2. Precise Surgical Manipulators. Source: [9].

2. Spacecraft Based Manipulators in Experiment and Application

With examples of highly-programmable and highly precise robotic manipulators

in mind, it is now useful to consider a brief history of spacecraft-based manipulators, both

those used in the simulation environment and those actually employed in space. The most

recognized space manipulator is the Shuttle Remote Manipulator System (SRMS) or the

Canadarm, the original version of which flew on the second Shuttle mission (STS-2,

Columbia) in 1981 (Figure 3) [10]. The four subsequent Canadarms, including the current

version aboard the International Space Station (colloquially referred to as Canadarm2),

have employed programmed routines and tele-operation by astronauts [11]. According to

interviews with former astronauts Dr. Jim Newman and Captain (Retired) Dan Bursch,

the light weight of the manipulators relative to their host spacecraft, their relatively slow

motion, and carefully planned maneuvers mitigate the problem of dynamically coupling

the manipulator’s motion to that of the spacecraft.

Because of its enormous size, the ISS is less susceptible to dynamic coupling

from its manipulators than was the Shuttle. Specifically, “Canadarm2 has a mass of 1,800

kg, in comparison to the ISS, which has a mass of approximately 420,000 kg,” and its tip

speed “during station assembly is 2 cm/s, while during [Extra Vehicular Activity] support

the maximum speed is 15 cm/s” [12]. In essence, the Canadarm2 is so small relative to

 6

the ISS and moves so slowly within its preplanned maneuver envelope that the system

can be treated as a fixed-based manipulator from the perspective of system dynamics.

However, with the trend toward smaller, more capable satellites in mind, questions about

how a manipulator’s motion would affect the dynamics of a “small” spacecraft became

an area ripe for investigation.

Figure 3. Deployment of the original Canadarm from Columbia. Source: [11].

One of the earliest experimental campaigns on small spacecraft-manipulator

systems began in 1987 under Dr. Kazuya Yoshida at Japan’s Tohuku University with the

Experimental Free-Floating Robot Satellite (EFFORTS-1, Figure 4) [13]. By this time,

experimentation on spacecraft robotics had taken place in multiple different experimental

environments including parabolic airplane flight, neutral buoyancy pools, and tethered

suspension [13]. The best testing environment, of course, would have been outer space,

but limited access prevented such an opportunity to all but a few. The most practical

method—the one employed by Yoshida, by the experimental campaign for this thesis,

and still the most common method for spacecraft robotics experimentation [14]—was

employing a flat, smooth surface over which a robot could float on air bearings.

 7

Figure 4. EFFORTS-1 Floating Via Air Bearings. Source: [13].

In 1992, the Japanese research team of Kazuo Machida, Yoshitsugu Toda, and

Toshiaki Itawa published results of their experimentation on a multiple-armed spacecraft

simulator, the Astronaut Reference Flying Robot (ARFR, Figure 5) [15]. It was a tele-

operated system aimed at “performing in-orbit servicing in the manner of an astronaut

with a manned maneuvering unit” [15]. Like EFFORTS-1, ARFR was developed as a

free-floating robot. Meanwhile, Yoshida was working on EFFORTS-2, a two-armed

floating spacecraft-manipulator system that was functionally similar to the ARFR,

including its dependence on tele-operation [13]. Experimental campaigns resembling

ARFR and EFFORTS would continue throughout the 1990s—many at the university

level.

One experimental campaign that was fortunate enough to be tested in space was

Germany’s Robot Technology Experiment (ROTEX). In 1993, ROTEX flew aboard the

Shuttle and demonstrated the capability for automatic behavior, tele-operation from the

Shuttle, tele-operation from Earth and “tele-sensor programming (i.e., learning by

showing in a completely simulated world on-ground, including the sensory perception

 8

with sensor-based execution later on-board)” [16]. As a small, on-board manipulator, the

dynamics of ROTEX, like the dynamics of the unloaded Canadarm, were inconsequential

to the dynamics of the spacecraft, but the ROTEX experiment demonstrated that

automation of robotics, the tele-operation of robotics, and the desire to combine these

technologies on a small spacecraft were developing in parallel. In fact, these technologies

were actually converging.

Figure 5. Astronaut Reference Flying Robot (ARFR). Source: [15].

The initial convergence came in the form of Japan’s Engineering Test Satellite 7

(ETS-VII), which was launched November 28, 1997 (Figure 6) [17]. ETS-VII actually

consisted of two satellites, a 2.5-ton chaser and a 0.4-ton target spacecraft [1] and

accomplished the “autonomous [rendezvous and docking] by [an] unmanned space

vehicle for [the] first time in the world” [18]. With a relative mass between the spacecraft

and the manipulator of 24, the manipulator was small enough that its motion did not

significantly affect the motion of the base [12]. Further, the robotic manipulator missions

were conducted by tele-operation from the ground [17]. Thus, while ETS-VII was a very

important step in the evolution, it falls short of a small spacecraft with relatively large

manipulator capable of autonomous behavior.

 9

Figure 6. ETS-VII. Source: [17].

In March of 2007, the Defense Advanced Research Project Agency (DARPA) of

the United States launched the Orbital Express mission [2]. In many ways, the

experimental campaign resembled that of ETS-VII. Orbital Express consisted of a chaser

vehicle named ASTRO with a six-degree of freedom manipulator named the Orbital

Express Demonstration Manipulator System (OEDMS) and a target vehicle named

NextSat [2]. Like ETS-VII, the relatively large size of ASTRO compared to OEDMS—a

relative mass ratio of 15—prevented significant effects of the manipulator’s motion from

affecting the base spacecraft itself [12], Unlike ETS-VII, however, Orbital Express was

capable of conducting operations with “various levels of autonomy,” including

“operations where only a single command was sent to initiate the test scenario” [2].

Space-based robotic manipulators without tele-operation had arrived.

A spacecraft with a small relative mass compared to its manipulator has yet to fly

in space, but efforts are underway at the University of Maryland’s Space Systems

Laboratory to develop the Dynamic Manipulation Flight Experiment Microsat

(DYMAFLEX, Figure 7). Unlike ETS-VII or Orbital Express, DYMAFLEX is a small

satellite with a robotic manipulator that is ~14% of the mass of the combined system [19]

 10

(a relative mass ratio of 5.3) [11]. Such a small satellite would provide a cheaper

alternative to launching behemoth satellites with relatively small manipulators, and if the

coupled dynamics can be controlled and the autonomous behavior accomplished,

DYMAFLEX could represent the convergence of small satellite and autonomous robotics

sought since Yoshida began his experiments in the 1980s.

Figure 7. DYMAFLEX with Deployed Antennas. Source: [19].

3. Efforts at the Naval Postgraduate School (NPS) Spacecraft Robotics
Laboratory (SRL)

The current efforts at the NPS SRL follows the same basic approach as many

other robotics efforts throughout academia. The basic methodology consists of four

phases: (1) design and build a manipulator, (2) attach it to a base spacecraft simulator,

(3) characterize its kinematic and dynamic behavior, and (4) control the manipulator to

perform a value-added task. The first SRL multi-link manipulator program was a four-

link manipulator constructed in 2012 (Figure 8).

 11

Figure 8. The First SRL Multi-link Manipulator. Source: [20].

In this same year, the 16 m2 polished granite monolith was installed in the

laboratory, providing additional maneuver space over the legacy 9 m2 monolith. The

table-top method experimentation allows for a spacecraft/manipulator system that

operates in three degrees of freedom (translation in the x and y directions of the Cartesian

plane and rotation about the z axis, which is perpendicular to the table. A four-joint

robotic manipulator system is desirable because it offers four degrees of freedom

(4DOF). Despite the dynamic coupling, a 4DOF manipulator operating in a 3DOF

experimental environment enables the base to remain stationary under the right

circumstances. Such kinematic redundancy is convenient if, for example, the host

spacecraft has a camera that needs to observe the end effector working.

The first-generation manipulator system was designed to attach to the lab’s third

generator Floating Spacecraft Simulator (FSS), the tall rectangular prism in Figure 8. As

in nearly all manipulators, the links depended upon the base spacecraft for power and

computation, requiring electrical wiring to be strung throughout the link. Once

constructed, the manipulator could not be reconfigured, limiting the number and type of

table-top experimental problems to which the system could be applied.

The solution to this limitation was to design and build a modular link that

contained all of the power, hardware, and software within its own structure (Figure 9).

 12

These independent links are compatible with the new fourth-generation FSS (Figure 10),

which was designed to allow manipulator mountings on each of its four faces. In the

current configuration, the links depend upon the FSS only for the compressed air that

flows through a series of detachable air hoses to the link air pads.

Figure 9. Complete Link Assembly. Source: NPS SRL.

Four modular, independent links can be reconfigured and mounted on the FSS in

any number of ways. For example, all four links could be attached into one serial

manipulator as in the current investigation, but two manipulators could just as easily be

affixed to two adjacent (or two opposite) sides for experimentation with two cooperative

(or two independent) manipulators such as EFFORTS-2, ARFR, the Massachusetts

Institute of Technology’s (MIT) Experimental Free-Flying Robot [21], and the Tsinghua

University’s Humanoid Free-flying Space Robot [22]. The two-armed manipulators

provide examples of systems designed to have cooperative manipulators, but like their

single manipulator counterparts, they lack the ability to be reconfigured. The cooperative

control of both manipulators presents a challenge beyond the scope of this thesis, but is

recommended as a future area of investigation.

 13

Figure 10. The Floating Spacecraft Simulator (Without Reaction Wheel).
Source: NPS SRL.

The kinematics and dynamics of each configuration and the on-board control

algorithms would change for different scenarios, but the hardware and the software to

calibrate the kinematics and dynamics would remain largely the same. An entirely new

manipulator would not need to be built for each series of experiments, which opens the

possibility of multiple investigations without the time-consuming and expensive process

of designing, building, testing, and configuring a new robotic manipulator every time the

mission set changes. To that end, the first link of the SRL’s second-generation spacecraft

manipulator was designed and built by Dr. Markus Wilde and Mr. Daniel Alvarez from

March 2013 to October 2014 [20]. At that time, the modular manipulator design (named

the Modular Arm Robotic Manipulator, or MARSMAN) was believed by the researchers

to be the first of its kind in the field. Dr. Josep Virgili-Llop, a National Research Council

post-doctoral fellow at the NPS NRL, and the author continued work on the project

beginning in June 2014.

C. RESEARCH OBJECTIVES

The primary purpose of the investigation was to achieve table-top

experimentation of a workable, modular, four-link, single manipulator system and to

calibrate the systems kinematics and dynamics. Although the temptation for continued

 14

design improvement was ever present, investigations into modified structural concepts

was limited. Several significant hardware modifications were made, however, and these

are explained in Chapter II. In the process, a 6DOF kinematics and dynamics calibration

model was developed and validated (in 3DOF) through experimentation.

The 4-link MARSMAN configuration is believed to be the first multi-link

manipulator composed of modular, reconfigurable links. It is also significant to note that

the mass ratio of the base to the manipulator (approximately 1.3), and the inertia ratio of

base to the manipulator (approximately 0.02 when the manipulator is fully extended) are

significantly smaller than any of the systems previously discussed. These small numbers

are indicative of a system with significant dynamic coupling and highly non-linear

dynamics.

An open-source software model named the Spacecraft Robotics Toolkit (SPART)

was presented at the 6th International Conference on Astrodynamics Tools and

Techniques (ICATT) [23], and in an effort to reduce the duplication of efforts among

roboticists worldwide, the software was made publicly available via the GitHub open-

source, collaborative development environment [24]. To the knowledge of the author,

SPART is the first open-source kinematics and dynamics simulator for spacecraft

robotics.

With the four-link manipulator complete, the investigation is ready to proceed in

any number of directions, including the control of the robotic manipulator, the integration

of an end effector, or the use of the manipulator in capture and berthing scenarios. A

more detailed discussion on the course of future work is offered in Chapter VI:

Conclusion.

 15

II. DESIGN EVOLUTION

This chapter recounts the evolution of the manipulator link design, highlighting

the hardware and software changes between the first and subsequent manipulator links.

While Link 1 was functional, there were multiple areas ripe for improvement. These

design upgrades will be discussed in further detail, but prior to experimentation, Link 1

was upgraded with the same components as Links 2–4. Thus, all four links follow the

same design.

A. REQUIREMENTS

The original design requirements were found to adequately meet the experimental

goals of the project but were modified to employ Wi-Fi and commercial-off-the-shelf

(COTS) components. The design requirements thus remain the same as those outlined by

Wilde and Alvarez [20] with one modification and one addition:

 Easily interchangeable modular design

 No wires routed through joints

 MODIFIED: Wireless data relay to base robotic vehicle via Wi-Fi

 On-board power supply

 On-board servomotor and encoder

 On-board torque sensor

 Highest accuracy components for reasonable cost and mass

 ADDED: Use all commercial-off-the-shelf (COTS) components

B. MODIFIED DESIGN

1. Retained Hardware

The majority of the hardware components of the Link 1 were retained for

subsequent links. These components include the 3D-printed link structure, the Harmonic

Drive FHA-8C-30-12S17b-E servomotor and the Harmonic Drive DEP-090-09

 16

servomotor driver [25], the FUTEK TFF400 torque sensor [26], the Inspired Energy

NH254 lithium-ion battery [27], the Traco Power 75-2415WI V DC/DC converter [28].

2. The Link Structure

The structure of each manipulator link consists of five separate polycarbonate

pieces designed in Siemens NX computer-aided design/computer-aided

manufacturing/computer-aided engineering (CAD/CAM/CAE) software. Each piece was

created in a part file format (.prt) and exported to the printer as a stereo lithography file

(.stl).

Lesson Learned

While the NX software is very sophisticated, a freely available software package

like the Windows 3D Builder application can be used to view and manipulate the

.stl files. In this project, 3D Builder was used to create the link shoes (see Section

II.3.e.). The default file format for items saved from 3D builder is the .3mf format,

but objects can be saved as .stl files.

The five pieces of the link are the main link structure, the outer plate, the motor

carriage, the inner bracket, and the outer bracket. Figure 11 shows the pieces as they

arrive from the 3D printer. Figure 12 shows the same pieces after the substrate has been

removed.

 17

Figure 11. Five Pieces of the Main Link Structure with Substrate.

Figure 12. Five Pieces of the Main Link Structure without Substrate.

 18

a. The FHA-8C-30-12S17b-E Servomotor and the DEP-090-09
Servomotor Driver

The FHA-8C-30-12S17b-E harmonic drive servomotor (Figure 13) is the on-

board actuator for each manipulator link. It responds to commands from the DEP-090-09

servomotor driver (Figure 14)—a driver chosen specifically for its compatibility with the

servomotor’s absolute encoder. The servomotor sends its position data back through the

servomotor driver. The driver calculates velocity based upon the position data and notes

the amount of applied current (a proxy for applied torque). The controller uses these

kinematic data points for each link.

Figure 13. FHA-8C-30-12S17b-E Servomotor.

 19

Figure 14. DEP-090-09 Servomotor Driver. Source: [25].

The driver is programmed via the accompanying Copley Motion Explorer 2

software produced by the Copley Controls company [29]. Driver settings are chosen

through the graphic user interface and can be tested through an RS232 serial line

connection between the driver and the programming computer. Once settings are

satisfactory for the mission requirements, they can be saved and uploaded to the

driver’s flash memory as a proprietary Copley Controls Axis (.ccx) file. For the .ccx

file used in this project and the chosen parameter settings, see Appendix D:

MARSMAN_Driver_Load.ccx. Table 1 lists size, weight, power, and cost characteristics

of both the servomotor and the driver.

Table 1. Servomotor and Driver Characteristics. Sources: [20], [25], [26].

Hardware Dimensions Mass Input Voltage Input Current Cost

Servomotor 50x49x48.5mm 0.5kg 24V DC 3A $2,500

Driver 196x99x31mm 0.45kg 24V DC 10A $700

Lesson Learned

To maintain the memory of its current location when the primary power source is

removed, the encoder requires input from an alternate power source. In the

current design, this alternate power source is a 1.3V Daytona battery. This very

important power source was not documented in the initial assembly literature.

 20

b. The FUTEK TFF400 Torque Sensor

The FUTEK TFF400 torque sensor (Figure 15) attaches to the servomotor and

senses the amount of torque applied by the servomotor.

Figure 15. FUTEK TFF400 Torque Sensor, Isometric and Rear Views.
Source: [26]

As the motor applies torque to the Link body’s outer plate, the mechanical

twisting experienced by the face of the torque sensor is converted into a voltage, which

flows into the sensor’s Wheatstone bridge circuit at the +Excitation node (Figure 16). The

current signal is read at the +Signal, -Signal, and –Excitation nodes and those currents

pass to a load cell amplifier—a COTS integrated circuit that is a new element in the

evolved design—and then to the Arduino Due microprocessor for processing and

transmission. It should be noted that a low-level torque will produce a reading that is

difficult to distinguish from the sensor noise. Table 2 lists size, weight, power, and cost

characteristics of the torque sensor.

 21

Figure 16. Wiring Diagram for FUTEK's TFF400 Torque Sensor. Source: [30].

Table 2. Torque Sensor Characteristics. Sources: [4], [20].

Hardware Dimensions Mass Output Voltage Resolution Cost

Torque Sensor 50.8 x 50.2mm 0.25kg 3mv/V 0.003Nm $1,040

c. The Inspired Energy NH2054HD31 Lithium-Ion Battery

The main power source for each link is the Inspired Energy NH2054HD31

(Figure 17). This rechargeable, lithium-ion battery has a nominal voltage and current life

of 14.4V/6.2Ah—an extremely capable battery for this experimentation. The battery and

its mounting remained the same from the initial design, but the manner in which the

voltage was routed changed to provide the necessary 24V to the driver and servomotor

and the necessary 5V to the Arduino.

 22

Figure 17. The Inspired Energy NH2054 Li-Ion Battery. Source: [27].

Lesson Learned

The manufacturer recommends an input voltage for the Arduino Due

microprocessor of 7-12V with 6V and 16V being the absolute upper and lower

bounds [31]. Ostensibly, the Arduino Due seems compatible with the

NH2054HD31. However, the NH2054HD31 specification sheet notes that the

battery can charge up to a maximum of 16.8V—a voltage that will melt the Due’s

onboard voltage converter [27]. Temporary solutions included using slightly

discharged batteries and utilizing an auxiliary 9V battery. Ultimately, a voltage

regulator was installed between the main power source and the Arduino Due. The

discharge curve for this battery is shown in Figure 18.

 23

Figure 18. Discharge Curve of 14.4V Li-Ion Battery. Source: [27]

d. The Traco Power 75-2415WI V DC/DC Converter

The Traco Power 75-2415WI V DC/DC converter takes the nominal 14.4V from

the main power source and converts it to the 24V needed to power the servomotor driver

and the servomotor, which are connected in series. It does not provide any power to the

torque sensor as indicated in Link 1’s initial design electrical power architecture [20].

 24

Figure 19. Traco Power 75-2415WI DC/DC Converter. Source: [28].

e. The Arduino Due Microprocessor

The Arduino Due is a hobby-grade microprocessor board that takes advantage of

the C programming language and Arduino’s own Integrated Development Environment

(IDE) (Figure 20). It is capable of reading the analog torque sensor output signals and

converting them to digital signals, which are then passed through a compatible piece of

communications hardware. In the initial design, a compatible XBee shield was mated

with the Arduino Due to pass position, velocity, and torque data. In the evolved design,

the Arduino Wi-Fi shield replaced the XBee shield. The Arduino nominally runs on 3.3V

of power but can accept recommended input voltages between 7-12V [31].

 25

Figure 20. Arduino Due Microcontroller. Source: [31].

f. The LinkSprite RS232 Shield and Serial Connection Hardware

The LinkSprite RS232 shield is an Arduino-compatible shield that allows the

Arduino Due to transmit and receive data to/from the servomotor driver via serial cable

(Figure 21).

Figure 21. LinkSprite RS232 Shield. Source: [32].

 26

g. The Dantona 3.6V Auxiliary Battery

This Dantona 3.6 battery (Figure 22) provides a bias voltage to the motor encoder

when the primary power source, the 14.4V battery, is removed. Without a power supply,

the absolute encoder will not retain knowledge of its position.

Figure 22. Dantona 3.6V Battery.

h. Air Delivery System Components

The FSS houses a tank of compressed air, which flows to each of the links via

0.125″ plastic tubing. In keeping with the modular design intent, each link has

independent tubing that attaches to the adjacent links via interlocking tubing connectors.

A T-splitter allows for air flow to the air bearing itself which connects to the tube via a

brass pipe fitting. The bearing is made of a porous type of carbon that allows the

compressed air to flow through it. An adjustable threaded ball stud attaches to the bottom

of the main link structure and fits within the socket of the bearing. A 3-D printed cap

designed and printed in-house keeps the ball joint seated in the bearing. Figure 23 shows

these parts.

 27

Figure 23. Air Delivery System Components.

3. Hardware Upgrades

With the goals of maximizing COTS equipment to decrease link assembly time,

ensure repeatable results, and improve the resolution of the signal reading from the torque

sensor, multiple significant hardware changes were implemented. First, the custom

circuitry implemented in the original link was replaced with a commercial-off-the-shelf

(COTS) load cell amplifier. The removal of the custom circuitry necessitated the

installation of a voltage regulator between the DC/DC converter and the Arduino

package. Second, the XBee radio transmitter was replaced with an Arduino Wi-Fi shield

that was compatible with the Arduino Due board and the originally-used RS232 interface

board. Third, the custom serial cable connecting the servomotor driver to the RS232

shield was replaced with functionally identical COTS pieces. Finally, several subtle

design improvements were incorporated into the design.

a. The SparkFun Load Cell Amplifier-HX711

To classify the dynamics of the robotic manipulator, information on applied

torque is essential. The previously-discussed FUTEK torque sensor is responsible for

measuring the torques applied by the motor, but the mechanism by which that data is

 28

passed from the torque sensor (an analog signal from a piece of hardware) to analyzable,

digital data is an analog-to-digital converter (ADC). In this case, the links employ a

Sparkfun load cell amplifier. The SparkFun Load Cell Amplifier-HX711 is shown in

(Figure 24).

The crucial component of the load cell amplifier is the HX711 integrated circuit, a

chip specifically designed to read a signal from a load cell (i.e. the torque sensor) at high

precision. An open-source header file (HX711.h) and a complimentary C++ source code

file (HX711.cpp) were available from SparkFun and were incorporated into the final

Arduino code (See Appendix A: SparkFun HX711 Load Cell Amplifier Open-source

Header File and Appendix B: SparkFun HX711 Load Cell Amplifier Open-source C++

Source Code File).

Figure 24. Both sides of the SparkFun Load Cell Amplifier. Source: [33].

To define “high precision,” it is necessary to investigate the torque sensor

specifications, specifically how it responds to varying voltages. According to its

specifications, the torque sensor has a rated output of 2mV/V when the torque input is at

a maximum (400 in-oz or approximately 2.82 Nm) [26]. With the 15V excitation to the

torque sensor from the DC/DC converter in the original design, the voltage difference

between the terminals of the torque sensor was found to vary by a very small amount,

only 30mV [20]. The intent of the custom circuit board in that design was to boost the

strength of the torque sensor output, ideally to the 3.3V accepted by the Arduino’s analog

input port [20]. The Arduino itself can only serve as a 10-bit analog-to-digital converter

(ADC). Thus, each torque sensor reading can be represented by one of ten integers from

 29

zero to 210 (or 1,024). While this method was workable, it only provided a best-case

resolution of 103.3V 2 3.2mV , which is a poor resolution in relation to the 30mV

measured variation. Implementing a COTS load cell amplifier eliminated the need for

custom parts while allowing for greater resolution of the torque signal.

The Spark Fun load cell amplifier uses the HX711 24-bit analog-to-digital

converter (ADC) to transform the torque sensor’s analog electrical signal output into a

digital signal that can be processed by the Arduino stack and analyzed within

Simulink/MATLAB. Since the HX711 has a capacity of 24 bits, it can represent 224 (or

16,777,216) integers. The nominal middle of the HX711’s range is 8,388,608. With zero

load the torque sensor read in the range of 8,374,000 with fluctuations due to sensor

noises—a reading reasonably close to the nominal middle. With 24 bits, the best-case

resolution becomes 24 43.3V 2 1.97 10 mV , which is a vast improvement over using

the Arduino’s ADC.

The second step in the calibration of the data was to calculate the analog input to

the torque sensor. With the Arduino putting out 5V, the analog voltage leaving the

HX711 (pin 3, Analog Voltage Drain or “AVDD”), can be calculated via the equation

provided in the system diagram, Equation 1.

(1 2)

1

VBG R R
AVDD

R

 (1)

In the above equation, the bandgap voltage (VBG) is the reference bypass analog

output voltage (pin 6), a fixed value of 1.25V. R1 and R2 are the resistor values within

the circuit, 8.2 k and 20 k , respectively [34]. Note that the R1 and R2 values listed in

the product diagram are reversed—a mistake that caused some confusion during initial

measurements. When calculated as listed in the diagram, the analog power supply is

found to be 1.78V—outside the nominal range of the HX711 (2.2 to ~5.5V). The voltage

was measured at the input to the torque sensor and found by voltmeter to be 4.33V, very

close to the mathematically predicted AVDD of 4.30V when R1= 8.2 k and R2=20 k .

 30

On the HX711, Channel A can be programmed with a gain of 128 or 64 [34]. The

higher gain value was chosen and implemented via the Arduino code to allow for a

higher resolution in the sensor output. The system specifications state that a gain of 128

and an AVDD of 5V, the corresponding voltage output is expected to be within the range

of +-20mV [34]. In the case of the torque sensor, the AVDD value is less than 5V, so the

actual range can be calculated by Equation 2 to be 17mV.

Nominal Range Actual Range

Nominal AVDD Actual AVDD

 (2)

Finally, the torque sensor itself has a calibrated output of 1.9873mV/V at 400 in-

oz (2.8246Nm). With 4.3V actually applied to the sensor, the torque constant ()k as a

function of voltage can be calculated. By Equation 3, every mV applied results in .33Nm

of torque. This mathematical model was implemented in the Arduino code. The results of

the code were verified by measuring the applied torque with an analog torque watch and

the voltage output with a voltmeter.

2.8246
.33

1.9873 4.3

Nm
k Nm mV

Nm mV V

 (3)

b. The Arduino Wi-Fi Shield

The Arduino Wi-Fi shield replaced the Xbee wireless communication shield from

the original design for a number of reasons. The Xbee shield was capable of adequate

transmission rates and ranges for the application, but it depended upon the Zigbee

protocol, a more obscure cousin of Wi-Fi. Since the FSS and the VICON system use

Wi-Fi, an Arduino-compatible Wi-Fi shield seemed like the obvious choice for

implementation although Bluetooth was briefly considered. Second, communication with

the on-board XBee required attaching an XBee transmitter to the USB port of a command

laptop. A Wi-Fi shield is capable of interfacing directly with the command laptop’s

organic Wi-Fi capability, and although an external router was used in this thesis, a more

 31

capable microprocessor (for example, a Raspberry Pi) could be used to create an ad hoc

Wi-Fi network. Finally, due to a lack of on-hand supplies and the discontinuance of the

Xbee shield, determining a replacement became necessary. In an ironical twist, the

Arduino Wi-Fi shield that was chose as the successor to the Xbee shield was itself

discontinued by Arduino during the evolutionary design. A top view of the Arduino Wi-

Fi shield is shown in Figure 25.

Figure 25. Arduino Wi-Fi Shield. Source: [35].

The final limitation of the Arduino Wi-Fi shield is that it is no longer being

manufactured; Arduino has discontinued the product line and is no longer updating the

Wi-Fi Shield webpage. Thus, as efforts were being made to integrate the shield into the

existing configuration, the hardware itself was already obsolete. Future work must

explore the integration of a replacement for Arduino Wi-Fi shield, such as the Raspberry

Pi microcontroller with Wi-Fi dongle (more on that in Chapter VI).

 32

c. The RS232 Shield and Serial Cable Connection

The RS232 shield requires a gender changer to connect the serial cable to the

servomotor. Both ends of the serial cable are capped with RJ12 connectors. The

introduction of the COTS gender changer and a new serial cable that follows the U.S.

Bell System coloring scheme eliminated the need for tedious customization of a serial

connector and the use of a null modem.

Lesson Learned

Not all serial cables are wired the same. The cables used in this project use the

U.S. Bell System Coloring scheme. As viewed from the front of the RJ12

connector, the colors of the wires are (from left to right) white, black, red, green,

yellow, blue. When both ends of the cable are placed side-by-side, they display the

same pattern (the” standard” configuration). If the color patterns mirror one

another (the “reversed” configuration), the cable still can be used, but a null

modem needs to be inserted between the RJ12 connector and the RS232 port to

flip the transmit and receive signals.

d. Voltage Regulator

To keep the battery’s output voltage in a safe operating range for the Arduino, a

voltage regulator was installed to convert the 16.8V maximum voltage to a 5V input for

the microprocessor (Figure 26).

33

Figure 26. Voltage Regulator. Adapted from [36].

e. Miscellaneous Modifications and Improvements

In addition to the significant component changes, several more subtle changes

were included in the design. Mounting hole placements were modified to better

accommodate placement of the microcontroller, a Velcro strap was added to prevent

rattling of the battery during testing, and bolt usage was standardized to the greatest

extent possible. Apart from the bolts required to mount the torque sensor, all other bolts

are button hexagonal head, 4mm diameter.

Finally, a link with an attached air bearing presented a problem: the link could not

stand because the air bearing was jutting out the bottom of the structure. Initially,

cardboard boxes were used to prop up the completed links, but these were fairly unstable

(and unsophisticated). To address that shortcoming, the freely available Microsoft 3D

Builder application was used to model “shoes” for the links. The shoes (Figure 27) lift the

link off of the table high enough so that the dangling air bearing does not touch. As a side

note, the 3D Builder software was also useful for viewing the link components when

licenses with the more advanced Computer Aided Drafting Software became

problematic.

 34

Figure 27. “Shoe” Developed Using the Free Microsoft 3D Builder Application

 35

III. ASSEMBLY DOCUMENTATION

A. INTENT OF THE ASSEMBLY DOCUMENTATION SECTION

The intent of this section is to document the assembly of a link to a sufficient

degree that future researchers wishing to replicate the experimental campaign, evolve the

present design, or develop an entirely different robotic manipulator design have a well-

documented, successful design from which to begin their work. Although assembly

documentation exists prior to this, given the hardware upgrades, a newer, more thorough

documentation is necessary. This documentation additionally includes thorough labeling

of part names, wiring diagrams that will prevent future agonizing over pin-out schematics

and hardware interfaces, an introduction to the driver programming software interface,

and an in-depth discussion of assembly methodologies and lessons learned. In truth, no

two links were constructed in exactly the same sequence. However, by the completion of

Link 4, a best-practice approach was established.

At the outset of the construction of each Link, the idea to transform the side walls

of the link structure into slide-out walls resurfaced. Walls that could slide out would

avoid the difficulties of fitting large hands in small places and trying to tighten nuts onto

inconveniently located bolts. The sliding wall modification was never attempted for two

reasons. First, in the interest of research focus, a time-consuming diversion into CAD

modifications was not desirable. Second, and more importantly, it was desirable to keep

all of the links as structurally similar as possible to simplify the initial assessment of the

system kinematics and dynamics. It is possible that sliding walls would have diminished

the rigid-body behavior of the manipulator link.

Previous documentation of the link assembly favored the approach of first

mounting the hardware to the structure and wiring throughout the process. I suggest that a

simpler method is to complete all of the subsystem wiring first. Broadly, the manipulator

link can be viewed as four subassemblies: the torque sensor/servomotor subassembly, the

circuit board subassembly, the power subassembly, and the servomotor driver (which

 36

simply mounts to the wall of the main link structure). Thus, the documentation of the

assembly begins not with the link structure but with the preparatory component wiring.

B. BUILDING A LINK

1. The Servomotor Cable Connectors

The servomotor has two wiring outputs, the motor leads (top cable in Figure 28)

and the encoder cable (bottom cable in Figure 28). Neither of these two cables comes

with a connector that is compatible with the servomotor driver. Figure 32 shows the

motor with stock connectors; the motor leads connector is the white connector, and the

encoder cable connector is the black connector.

Figure 28. Servomotor Cabling Schematic. Source: [25].

 37

Figure 29. Servomotor with Stock Connectors.

The motor leads are initially attached to the six-pin connector shown in Figure 33.

The red, white, and black wires correspond to the power inputs for the three-phase motor

(phases U, V, and W, respectively). At continuous operation, the driver provides 2.3A,

2.4A, and 1.8A of current via those three lines (U, V, and W, respectively) [37]. Pin 4

attaches to the green/yellow wire, which serves as the ground. The designation of the

green/yellow wire as “PE” in Figure 30 stands for “Protective Earth,” a term used by the

International Electrotechnical Commission [38].

 38

Figure 30. Motor Lead Connector Layout (Units in mm). Source: [39].

The stock connector is removed and replaced with a 4-position J2 connector (that

is, it connects to the J2 port on the servomotor driver). This connector, along with the

servomotor encoder cable connector (discussed in the next section) comes in a connector

kit available from Copley Controls Corporation (kit name: AEP-CK, AMP-CK, part

number: 84-00147-000 Rev A). The new motor lead connector’s serial number and

nomenclature are “57-00605-000: Plug, RoHS, Euro-Style, 4 position, 5.08 mm.” The

colored wires are attached to the new motor lead connector in accordance with Figure 31.

 39

Figure 31. Motor Cable Wiring with 4-Position J2 Connector.

2. The Encoder Cable Connector

The encoder cable connects to the motor driver and reads position data. From

position data, velocity data is derived on-board the driver. The pinout of the stock

connector and corresponding descriptions of the pins is shown in Figure 32.

 40

Figure 32. Pinout of Encoder Cable with Stock Connector. Source: [39].

The 20-pin J3 feedback connector (57-00608-000: Connector, RoHS, 20 position,

Mini-D, solder cup) replaces the stock connector. The plastic shell (47-00130-000:

Backshell, RoHS, plastic, 20 position, Mini-D) encases the new 20-pin connector. Figure

33 shows a picture of the new connector pieces alongside the encoder cable.

 41

Figure 33. Replacement Connector Pieces Alongside the Encoder Cable.

The pinout diagram for the 20-pin connector is shown in Figure 34. Notice that

the brown and orange wires (the auxiliary battery negative and positive connections,

respectively) are not connected to a pin. These wires attach to a separate power source, a

3.6V Dantona battery, as shown in Figure 35. This 3.6 battery provides power to the

motor encoder when the primary power source, the 14.4V battery, is removed. Because it

is an absolute encoder, the encoder will not retain knowledge of its position without a

power supply.

 42

For color codes, reference Figure 32. Gold squares represent unused pins.

Figure 34. Pinout of Servomotor Encoder Cable with 20-Pin Connector.

Figure 35. Encoder Cable with 20-Pin Connector and Attached Battery.

3. The Torque Sensor Wiring

As discussed in the review of hardware, the FUTEK Model TFF400 torque sensor

has a four-pin output receptacle. The mating connector for this receptacle, the

FGG.0B.304.CLAD35 type connector, is not included as a component of the torque

sensor but is purchased separately. Wires were soldered to the four-pin connectors, and

the shell of the connector reassembled around the pins. The .CLAD35 connector has a red

 43

dot which aligns with the torque sensor receptacle. The output wires were labeled

(+EXEC, -EXEC, +SIG, -SIG) to avoid confusion during their connection to the load cell

amplifier connections of the same names. Figure 36 shows the torque sensor with mated

.CLAD35 connector. Although no standard wiring scheme was used from link to link, in

the image below, white wires attach to the load cell amplifier, and the green wires will

eventually connect to the Arduino assembly.

Lesson Learned

The red dot on the shell of the .CLAD35 connector swivels about the four-pin

connector itself; it is not fixed to the four-pin connector. Thus, an alignment of the

connector’s red dot with the torque sensor’s red dot does not necessarily mean

that the intended wires are aligned with the intended receptacles. Extra care

should be taken to ensure that the output of each wire is known so that it can be

connected to the appropriate position on the load cell amplifier. In one instance

where the lead wires were mislabeled coming out of the receptacle, no negative

effects on the hardware were noted.

Figure 36. Torque Sensor Wired to the Load Cell Amplifier.

 44

4. Battery Connector and DC/DC Converter

From the nominally 14.4V Li-ion battery, power flows according to the block

diagram in Figure 37. The DC/DC converter connects to the power and ground outputs of

the battery terminal. The driver and motor require 24V, so the voltage is up-converted

and passed to the driver’s J1 connection portal via a three-pin connector similar to the

one used on the motor cable wiring (from the same connector kit, part 57-00604-000:

Plug, RoHS, Euro-Style, 3 position, 5.08 mm). Note that only the voltage and ground

pins are used in the three-pin connector.

While the driver/motor assembly requires 24V, the voltage going into the Arduino

assembly needs down-converted. This is managed via a Low Dropout regulator (LDO)

that outputs the necessary 5V. The LDO’s input of 14.4V (nominal) comes directly from

the battery. Figure 37 shows a block diagram of the electrical power architecture.

DC/DC
Converter

Driver/Motor
Subsystem

Voltage
Regulator

Microprocessor /
Wi-Fi

Subsystem5 V
.8 A (max)
4 W (max)

24 V
1.7 A

40.8 W
3.3 A (max)

79.2 W (max)

14 V
2.9 A

40.8 W
5.7 A (max)

79.2 W (max)

14 V
.3 A (max)

4.0 W (max)

14.4 V
3.2 A

44.8 W
5.8 A (max)

83.2 W (max)

Battery

Figure 37. Block Diagram of the Electrical Power Architecture.

5. The Arduino Subassembly

The Arduino subassembly consists of the Arduino Due microcontroller, the

Arduino Wi-Fi Shield, and the RS232 shield. The Due uses a universal asynchronous

receiver/transmitter (UART) microchip to transmit data via the transistor-transistor logic

(TTL) method, which for the Due remains at a voltage level between zero and 5V [40].

The RS232 shield uses the power from the Due and converts the data from TTL to the

 45

Recommended Standard 232 (RS232) format, which is compatible with the driver. From

a hardware perspective, the components are simply stacked on top of one another: the

Wi-Fi shield plugs into the Due, and the RS232 shield plugs into the Wi-Fi shield. The

RS232 shield connects to the motor driver via a serial cable. As noted previously, the

proper serial cable (i.e., a serial cable that uses the standard U.S. Bell System coloring

scheme) eliminates the need for a null modem but requires a gender changer to align the

pins. Jumper wires are used to connect the Due’s transmit and receive ports to the

RS232’s transmit and receive ports. Given the capability of the Due, different

transmit/receive port combinations are possible.

After examining the Due pinout diagram and experimenting with different

combinations, two successful combinations are offered here. Thus, even with a faulty

board or inexplicable malfunction, one combination or the other should allow for a viable

solution. In the first successful case, the Due’s port 16 (Tx) is connected to the RS232

shield’s digital port 3, and the Due’s port 17 (Rx) is connected to the RS232 shield’s

digital port 2. This configuration works when the jumper connectors on the RS232 shield

connect J2 and J3 in the D2 row and J1 and J2 in the D3 row. In the second case, the

Due’s ports 17 (Rx) and 16 (Tx) are connected to the RS232 shield’s digital ports 5 and

6, respectively. This configuration requires that the jumper connectors on the RS232

shield connect J2 and J3 in the D5 row and J1 and J2 in the D6 row. The connection of

the Arduino assembly to its power supply and to the load cell amplifier is explained in

section 5 with the discussion of the Arduino subassembly mounting.

6. Mounting the Components to the Structure

With the majority of the wiring completed, the subassemblies can be joined to the

outer structure. Mounting the parts may seem a straightforward task, but the order in

which they are mounted is important. Through the experience of building multiple links,

an order for assembling the components was decided upon that allowed for necessary

component testing while avoiding self-interference. It is, for example, not advisable to

mount the Arduino assembly until near the end of the assembly because trouble-shooting

the power subsystem may be necessary, and accessing the DC/DC converter or battery

 46

mount is difficult if the Arduino assembly is mounted. The procedure outlined below

incorporates similar lessons learned.

First, the torque sensor is screwed to the motor carriage with a piece of rubber

matting in between them. The rubber matting was a carry-over from the initial design and

is not strictly necessary for the link function. The rubber does, however, help to seat the

torque sensor snugly on the motor carriage and may possibly reduce the transfer of the

motor’s vibration to the torque sensor (Figure 38). The pin connector with completed

wiring (including its attachment to the load cell amplifier) is inserted.

Figure 38. Torque Sensor Mounted on the Motor Carriage.

Next, the servomotor is mounted to the outer plate (Figure 39). The servomotor

cables will not run through the slot in the outer plate but through the slot in the link

structure.

 47

Figure 39. Servomotor Mounted to Outer Plate

The motor carriage with affixed torque sensor is slid down over the servomotor

itself, fitting snugly in place (Figure 40).

Figure 40. Mated Torque Sensor and Servomotor

Two circular bearings (Figure 41) are added, one to the axel on the bottom of the

outer plate and a second on the axel of the outer bracket. The inner bracket is screwed to

 48

the top of the torque sensor. Once affixed to the outer plate, the outer bracket’s bearing

fits inside of the circular hole on the top of the inner bracket. Figure 42 shows the

completed joint assembly. The cables are run through the opening in the link structure,

and the inner bracket is bolted to the link structure.

Figure 41. Circular Bearings for Use on Outer Plate and Outer Bracket.

Figure 42. The Completed Joint Assembly.

With the joint assembly complete, the servomotor driver can be bolted to the

sidewall of the link structure. It will be programmed when the power supply is

 49

operational. The battery connector is bolted to the floor of the link structure, and the

DC/DC converter is mounted to the link structure’s wall opposite the servomotor driver.

The three-pin power connector from the DC/DC converter is connected to the J1

receptacle of the servomotor driver, the motor cable’s four-position connector is plugged

into the driver’s J2 receptacle, and the servomotor encoder with 20-position connector is

plugged into the driver’s J3 receptacle. The J5 receptacle is used for the connection of the

serial cable to the RS232 shield. The J4 and J6 ports are not currently used. Figure 43

shows a diagram of the driver connection ports, and Figure 44 shows the link assembly as

it looks at this stage in the construction.

 50

Figure 43. Diagram of the Harmonic Drive Connection Ports. Source: [41].

 51

Figure 44. Link with Joint Assembly, Mounted Servomotor Driver
and DC/DC Converter

At this stage, the main power supply (the 14.4V Li-ion battery) can be inserted

and the servomotor driver programmed. If the wiring is done correctly, the power

indicator light (the AMP light) on top of the driver will light solid green. Attaching a

serial cable between the J5 (RS232) port on the driver and a computer with the Copley

Motion Explorer 2 (CME2) software allows for configuring the motor driver. Figure 45

shows the CME2 graphic user interface (GUI) upon initialization of the software.

As mentioned in the hardware section, the required configuration file is a Copley

Controls Axis (.ccx) file. Through the GUI the user can manipulate system parameters

and create a unique ccx file, which is saved using the yellow floppy disk icon near the top

of the GUI window. For the ccx file used in this project and the chosen parameter

settings, see Appendix D: MARSMAN_Driver_Load.ccx. This particular configuration is

based upon the driver’s default configuration but contains adjusted controller gains for

stiffer joint resistance. To load this file upon first use, the user selects AmplifierBasic

SetupLoad ccx File. Changes to the ccx file are saved using the floppy disk icon at the

 52

top of the GUI window. The ccx File is saved to the driver’s internal flash memory using

the blue integrated circuit icon near the top center of the GUI window.

Figure 45. Copley Motion Explorer 2 (CME2) Graphic User Interface
upon Initialization.

Most system troubleshooting was done within the Control Panel window, which

is accessed by clicking on the second icon from the left in the main GUI’s ribbon bar.

To set the motor counter’s zero position, the motor first needs to be disabled. Disabling

the motor removes the applied voltage, which allows the user to turn the joint assembly

by hand (Figure 46). This configuration takes the zero position to be when the link

is aligned with the joint, or in other words, the link rotates about the joint from

approximately - 2 to + 2 .

 53

Figure 46. CME2 Control Panel with Disabled Motor Control.

Faults are most likely to occur if the motor is commanded to a position that it is

not physically able to reach (i.e., it thinks it needs to rotate further, but the wall of the link

structure is blocking the joint from turning). To prevent current overload, the controller

will implement its safety mechanism (a “Latched Fault”), which will prevent the

hardware from being damaged. If this happens, the motor will be unresponsive, and the

AMP light on top of the driver will blink red. When a link is attached to the CME2

software, the “Clear Faults” button will reset the driver. During experimentation it is

cumbersome to reattach the driver to the CME2 software, so removing and reinserting the

main battery will hard boot the driver. The removal of the main battery allows for manual

repositioning of the joint.

With faults cleared, the software can be enabled by clicking the “Enable” button.

All indicator “lights” in the Control Panel window will show green (Figure 47). Clicking

the “Enable Jog” box allows the user to send impulse commands to the motor in the

positive or negative direction to ensure that the motor is responding to the driver

commands.

 54

Figure 47. CME2 Control Panel, Faults Cleared, Jog Enabled.

With the battery connector, driver, and DC/DC converter mounted, only the

mounting of the Arduino assembly remains. The Arduino assembly is mounted opposite

the battery and in the current configuration, provides just enough clearance for the battery

to seat snugly into the battery connector. The power and ground wires run from the

battery connector to the bottom of the DC/DC converter. The power and ground wires to

the Arduino assembly attach directly to this connection (nominally 14.4V). As mentioned

in the hardware discussion, the Arduino assembly can accept 14.4V directly, but the Li-

ion battery can hold a voltage of up to 16.8V, which will destroy the Due’s on-board

voltage regulator. To prevent this from happening, a separate voltage regulator was

installed that down-converts the battery’s output from 14.4V to 5V. The 5V output of the

regulator is wired to the “+5V” pin on the RS232 shield. A ground wire connects the

“GND” pin directly to the ground of the DC/DC converter.

The load cell amplifier jumper wires are plugged into the Arduino assembly. The

load cell amplifier’s “2.7-5V” pin connects to the RS232 shield’s “+3.3V” output pin.

The load cell amplifier’s data (“DAT”) pin connects to the digital input #8 pin on the

RS232 shield. The load cell amplifier’s clock pin (“CLK”) connects to the RS232’s

 55

shield’s #9 digital input pin. A ground-to-ground connection completes the circuit. The

RS232 shield is itself connected to the servomotor driver via a serial connector and cable

plugged into the driver’s J5 (RS232) port.

At this point in the construction, the hardware for the power and data architectures

are in place. A schematic of the power architecture is shown in Figure 48, and the data

architecture schematic is shown in Figure 49. The data architecture will be discussed

more thoroughly in Chapter IV.

Figure 48. Power Architecture Schematic

 56

Figure 49. Data Architecture Schematic

The final step in the construction is the addition of the air bearing assembly.

Three pieces of plastic tubing approximately a foot long are attached to the three ports on

the plastic T-splitter. Tubing connectors are attached to each end, and the brass pipe

fitting is attached to the downward-facing tube. The threaded end of the pipe fitting is

wrapped in Teflon tape to ensure an air-tight seal and screwed into the bearing. The

threaded ball stud is inserted first through the bearing cap before being attached to the

bottom slot of the main link structure. While the ball stud may be positioned anywhere

along the slot, in practice, it was positioned underneath the link center of mass. The air

bearing and ball stud are saved until last because once added, the link can no longer stand

on a flat surface. The H-bracket “shoe” was developed as a holder for the full link

assembly. A view of the completely assembled link is shown in Figure 50.

 57

Figure 50. Complete Link Assembly. Source: NPS SRL.

With all of the hardware in place and the driver configured, a more thorough look

at the link operating concept and communications architecture are necessary. An

understanding of these components will enable an understanding of the microcontroller

code that was implemented via the Arduino Due. The code itself proved to be the most

challenging aspect of making the link work successfully. Following a discussion of the

Due’s code, an explanation of the kinematics and dynamics Simulink model will be

necessary before discussing the kinematic and dynamic calibration of the manipulator.

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

IV. DATA ARCHITECTURE

A. OVERVIEW

This chapter explains the communications architecture of the system given its

current capabilities. It outlines the concept of operations for the manipulator from a

communications perspective, explains the roles of the on-board hardware and software,

and discusses alternative methods of commanding the links. Finally, options for

architecture improvements are discussed.

B. CONCEPT OF OPERATIONS

As in previous testing with one link, testing the four-link manipulator involved

sending commands to the individual servomotor drivers from a laptop computer to the

links’ on-board communications hardware. Although the capability of the FSS to

autonomously control each link was later demonstrated, that capability was not used for

the calibration process. VICON cameras tracked the motion of the system via reflective

spheres attached to the base and the outermost link. Experimentation with the four-link

manipulator proved the concept that each of the links could be commanded

independently. The approach is conceptually simple (as shown in Figure 51), but proved

challenging in its implementation.

 60

Figure 51. Diagram of the Experimental Setup. Adapted from [42].

Because neither the Arduino Wi-Fi shield nor the FSS’s onboard Wi-Fi hardware

are capable of creating an ad hoc network, the communications architecture in its current

configuration depends upon an external D-Link® router. The router serves as the hub for

all information flow both to and from the manipulator links. With the current hardware,

two methods of sending data to and receiving data from the links are possible. In the first

method, which was used for the kinematic and dynamic calibration of the manipulator,

commands are sent from a laptop to each of the links, and the data from each link is

received by the laptop; the FSS neither sends nor receives data. In the second method, the

commanding software is compiled and uploaded to the FSS’s onboard computer, and the

FSS itself receives the telemetry and commands the links. Since the laptop control was

the only method used in this investigation, it is the only one that will concern us here.

C. DATA FLOW

1. The D-Link Interface

A discussion of the data flow necessarily begins with the router and its web-based

interface. First, when the D-Link is powered on, it creates its own network. The network

 61

is accessed by connecting to the in-house Wi-Fi network named “srl_dlink.” The

interface is accessed through a web browser at the following URL: http://192.168.0.1/.

Lesson Learned

Considerable confusion during experimentation resulted because the default

network name and password for the router had never been changed. D-link

routers are a fairly common piece of hardware, and there was another one in the

building to which the SRL hardware was connecting The router’s name was

reconfigured to “srl_dlink,” and the password remained blank for ease of access.

Through the Due code, which is written in the C programming language, the Wi-

Fi shields on the links are instructed to join the SRL network (Figure 52). The router

employs a Dynamic Host Configuration Protocol (DHCP). That is, when devices join the

network, the router assigns each device an internet protocol (IP) address, which, in the

default configuration, changes each time the device joins the network. To avoid manually

changing the device IPs each time in both the Simulink model and the Due code, the

router was configured to assign the same IPs to the same hardware, represented by a

unique media access control (MAC) address, each time. Similarly, port numbers were

hard-coded into the Due code to standardize the connection process. Port numbers are

not necessary for the connection itself, but they are necessary to designate the destination

of the datagram packet. For example, Link 1 connects to the FSS/Control Laptop

and sends data/listens to port #25010; the MAC address of its Wi-Fi shield is

0x78,0xc4,0x0e,0x01,0xc5,0xb1. The excerpt of the Arduino code below defines the

network, the FSS IP and its listening port, the FSS ports, and the MAC addresses in

reverse.

 62

Figure 52. Code Defining Network Parameters, Port Numbers,
and MAC Addresses.

A second aspect of the data transfer process that bears discussion is the message

protocol itself. The system employs the User Datagram Protocol (UDP). Unlike its more

reliable cousin, the Transmission Control Protocol (TCP), UDP sends datagrams blindly

without knowing for certain that there is a device on the other end to receive it [43]. This

setup allows for rapid messaging and simplifies the requirement to translate the data

packets, but message information can be lost during transmission or arrive in a different

order [43]. For this investigation, simplified data translation was a highly desirable

characteristic, but as will be discussed in a later portion of this chapter, the UDP protocol

led to data management challenges.

2. The Driver Interface and the Arduino Due Code

The Due’s software script initializes contact with the link’s motor via on-board

code. As a serial interface, the RS232 cable connects the two pieces of hardware and

enables communication by text. The initialization code sets the maximum acceleration

and deceleration rates (5000 counts/sec2, an arbitrarily high number), sets the initial

 63

velocity (zero counts/sec), enables the amplifier, and requests position and velocity data

from the driver. Upon receipt of the velocity command from the Simulink model, the

Arduino stack passes the command to the driver. The American Standard Code for

information Interchange (ASCII) strings used to achieve this functionality are shown in

Table 1. For a comprehensive guide to the driver’s ASCII interface and a list of available

commands, see [25].

Table 3. ASCII Strings for Due-to-Driver Communication. Source: [25].

Function ASCII String

Set Acceleration s r0x36

Set Deceleration s r0x37

Set Initial Velocity s r0x2f

Enable Amplifier s r0x24

Request Position Data g r0x32

Request Velocity Data g r0x18

Request Current Data g r0x0c

The driver communicates the command to the motor and requests position and

velocity data. The motor sends position and velocity data back via the encoder cable.

Meanwhile, the torque sensor is read back through the load cell amplifier. All of the data

(position, velocity, and torque) is read synchronously by the Due’s script and routed back

through the Wi-Fi shield, through the router, and to the UDP receive block in Simulink,

which allows for analysis. Unit conversions take place within the Due script, an

improvement to the previous system in which raw units from the driver (e.g., “counts”)

were converted to more meaningful measurements (e.g., radians) via a separate

Simulink model before analysis. For the complete Arduino code, see Appendix C:

OnBoardLink.ino.

 64

3. The Simulink Model

a. The Send/Receive Switch

The Simulink block diagram in Figure 53 shows the simple on/off switch used to

command a single link. For the kinematic and dynamic calibration, constant positive or

negative velocities were sent via Wi-Fi to the particular link. The predetermined port

numbers and IP addresses were used. On the receive side, position, velocity, torque data,

and a fourth quantity, the checksum term (discussed subsequently), return over the

network. In the composite ground station file, four such switches were used, one to

command each of the four links.

Figure 53. Send/Receive Switch for Link Control.

b. The Data Processing Subsystem

A breakout of the Data Processing Subsystem is given in Figure 54 and itself

consists of two subsystems, the Checksum Subsystem and the Enabled Subsystem. The

internals of the Checksum Subsystem and the Enabled Subsystem are shown in Figures

55 and 56, respectively. The Data Processing Subsystem exists to receive the data from

the links, verify the integrity of the data packets, and transform those data packets into a

useful form for analysis.

 65

Before transmission from the link, each data packet initially consists of position,

velocity, and torque data. Because the data stream may be corrupted during transmission,

however, the microprocessor code creates a pseudo-unique checksum term based on the

numerical values of the position, velocity, and torque. These four terms, then, are

transmitted inside of a single data packet, which the ground station receives. This data

packet passes through the Checksum Subsystem (Figure 55). The purpose of the

Checksum Subsystem is to verify that a complete and uncorrupted data packet has arrived

from the Link. To accomplish this, it reverses the process used to create the checksum

term. The first three pieces of information (position, velocity, and torque) are stripped

away from the raw data stream, multiplied by one hundred, and added together. This sum

is subtracted from the original checksum term and added to one hundred. If all bits arrive

uncorrupted, the final result of the additions and subtraction should be zero (to within a

small tolerance).

The output of the Checksum Subsystem controls the behavior of the Enabled

Subsystem. If the result of the checksum calculation is non-zero, the Enabled Subsystem

is disabled, preventing the corrupt data packet from passing through. If the result of the

checksum calculation is zero, the Enabled Subsystem is enabled, allowing the data packet

to pass through. Since it is highly unlikely that a corrupted data packet will result in a

zero calculation, the checksum ensures that only valid data packets are included for

analysis.

Figure 54. Breakout of the Data Processing Subsystem.

 66

Figure 55. Breakout of the Checksum Subsystem.

Figure 56. Breakout of the Enabled Subsystem.

The need for the checksum became apparent during initial testing of the

communications architecture when data packets were dropping or being received

incorrectly. The limitations of UDP were manifesting themselves. During the data

transfer testing phase, it was observed that the data sent from the Arduino (position,

velocity, and torque) would be received into Simulink in that order. At random intervals,

however, the order of the data received would swap, usually by one place. For example,

the position-velocity-torque data stream might switch to a velocity-torque-position data

stream. Further, data swaps were observed that involved two variables switching places, a

seemingly random behavior that made plotting and analysis of the data extremely

inconvenient if not outright impossible. An extensive debugging of the Arduino’s C code

resulted in improved performance mainly through the manipulation of driver read delays

and an increased buffer size, but the interim solution was enabling the blocking

functionality in the Simulink UDP receive block.

The blocking functionality enables retention of data until a complete packet of

new data is received. The maximum amount of time that Simulink will wait between

 67

packets is a configurable parameter that was arbitrarily set at ten seconds. Thus, if

Simulink did not receive a new complete data packet from the Arduino subsystem within

ten seconds, the simulation would time-out. Enabling the blocking mitigated the data

swapping problem but introduced the new problem of the simulation timing out. In

several cases, data collects of significant length (on the order of minutes) could be

achieved before the simulation timed out. The interim solution was finally replaced by a

better-behaved solution, the implementation of the Checksum Subsystem that detects

error packets and only enables complete packets to be passed through for analysis. With

the implementation of the checksum, the data swapping and system time-outs

disappeared, and data could be collected with confidence.

c. The Capture Function

After any residual motion damped out of the base-manipulator system, the

positions of the joint motors (iq) as measured by the encoders were captured via

Simulink’s capture function, which was also included in ground station workspace

(Figure 57). Depressing the capture button in Simulink enables the trigger, momentarily

turning the “0” at the top of the diagram into a “1” to inform the operator that the capture

has been successful. The vector of joint positions was passed into MATLAB; multiple

measurements built the initial vector into a matrix containing all measurements to be used

for the kinematic calibration. The Simulink capture happened at the same time as the

capture of the end effector and base-spacecraft state vectors via VICON.

Figure 57. Capture Function

 68

4. The VICON Interface

As it is used in the NPS SRL, the VICON system consists of ten infrared cameras,

an independent server, and the proprietary software to operate the system. The motion

capture cameras are depicted in the experimental setup shown in Figure 58. The array of

cameras detect the light as it bounces off of a series of silver spherical markers, and this

telemetry is sent to the main VICON computer via Ethernet cable where the inputs of the

multiple cameras are correlated.

Figure 58. Experimental Setup Including VICON Cameras. Source: [44].

 69

Figure 59. Silver Spheres Serve as Markers for VICON. Source: [44].

A screenshot of the VICON tracking software is shown in Figure 60 where the

silver reflective spheres appear as gold balls. A reference frame is attached to the left-

most ball, which is attached to the end of Link 4. This ball represents the location of the

notional end effector. As with the telemetry capture from the links, the telemetry capture

from VICON is accomplished manually via a capture button and collected via a

MATLAB script. The interface between the VICON system and MATLAB requires

VICON’s proprietary Datastream SDK software to be in the MATLAB script’s path. This

software is available at [45]. The MATLAB script that captures the data for the kinematic

calibration, including the state vectors of the base spacecraft and the end effector, is

included in Appendix E: Vicon_Calibrate.m.

 70

Figure 60. Screenshot of the VICON Tracking Software.

5. Potential for an Ad Hoc Network

Although this configuration proved adequate, its limitations were also apparent.

First, the Arduino Due is not capable of creating an ad hoc Wi-Fi network. If it were, the

microprocessor/Wi-Fi shield combination could serve as a router, and an external router

would not be necessary. Such a configuration is desirable because it simplifies the

hardware used in the data transmission architecture and creates a more realistic scenario;

the FSS communicates with each link via a self-contained network. A more capable

processor, such as a Raspberry Pi, would be capable of creating such an ad hoc Wi-Fi

network and has the advantage of further simplifying the link hardware; a Raspberry Pi

with Wi-Fi dongle can replace the whole Arduino Due, Arduino Wi-Fi shield, and the

RS232 shield.

 71

V. KINEMATICS AND DYNAMICS CALIBRATION

A. GENERAL OVERVIEW

To understand how the spacecraft/manipulator system will behave, its mechanics

must be understood. The mechanics of a system consists of its kinematics and its

dynamics. Broadly, kinematics is the study of the motion of an object without

consideration of its causes. Dynamics is the study of the motion with consideration of its

causes (i.e., forces and torques). This chapter addresses the kinematic characterization of

the four-link manipulator/FSS system followed by the dynamic characterization. The

mathematical underpinnings of the model are discussed in the context of their

application; that is, the discussion follows the flow of the MATLAB code, the SPART

model [24]. The portions of the SPART model relevant to this thesis are contained in

(Appendices E–P). While the SPART model is deigned to work in for up to six degrees

of freedom, the discussion of the application of the model in this section only concerns

itself with the 3DOF observable in experimentation.

A second function of the SPART model is to provide the calibration functionality.

The calibration is done to refine the system parameters that are difficult to measure, a

process that the subsequent chapter discusses in detail. The calibration scripts, one for the

kinematic calibration and one for the dynamic calibration, allow for comparison of the

initially estimated system parameters and the real-world observations. With accurate

knowledge of the system parameters, the system can be more precisely controlled.

B. KINEMATICS OVERVIEW

1. Definition of Terms

To characterize the kinematics of a unitary object, it is necessary to identify

the position, orientation, linear velocity, and angular velocity of the object. The

MARSMAN system, however, is not a unitary object, which significantly complicates

the characterization of its kinematics. For the FSS with n link attachments, the

characterization of the kinematics requires definition of the kinematic properties not only

of the base, but also of each link and joint and ultimately the end effector. These

 72

parameters are highly coupled and change at each time step in the mathematical

propagation.

The SPART model partly exists to model the system behavior (e.g., the positions

of the links, joints, and end effector at a given time). It necessarily calculates the

kinematic parameters first. This main script for kinematics is given in Appendix F:

Kinematics_Serial.m. This script calls on two supporting functions. The script in

Appendix G: DH_Rs.m calculate the rotation matrix R and the translation vector s based

on the Denavit-Hartenberg (DH) parameters and joint variables (mq). The script in

Appendix H: Skew_Sym.m converts the designated vector into the form of a skew

symmetric matrix.

2. The Base

The base itself can be treated as a rigid, unitary object with 3DOF (translation in

the x and y directions and rotation about the z axis). Its position relative to the reference

frame is described in terms of a state vector (0q), a 6x1 column matrix that contains

information about the base’s position in terms of linear motion (, ,x y z components) and

rotational motion (, ,x y z); see Equation 4. Collectively, the angles , ,x y z are

referred to as the Euler angles.

0
x

y

z

x

y

z
q

 (4)

Since the experiments occur on a flat table, the z component of the linear motion

will always be zero: the MARSMAN cannot move up and down. Similarly, it can only

rotate about the z axis, so the x and y components can be assumed to be zero. The

velocity vector (0q) and the acceleration vector (0q) follow the same form as 0q and are

 73

simply the first and second derivatives of 0q . As mentioned, the number of degrees of

freedom of the FSS is limited by the current experimental environment, but the

simulation model could easily accommodate 6DOF data if the opportunity for more-than-

3DOF experiments arises.

3. The Joints

For characterizing the kinematics of an n-link manipulator arm, one must know

the relative positions and velocities of each joint on the arm with respect to the base. The

joint position vectors (mq) and the joint velocity vector (mq) are nx1 column vectors. For

this experimental campaign, the VICON system measured the end effector and base

positions and passed them to the MATLAB/Simulink environment via Wi-Fi. The

servomotor driver provided telemetry (angular position and velocity) for each link.

4. Rotation and Joint Transformation Matrices

The Euler angles of the spacecraft base are used to create the 3x3 rotation matrix

()bR that expresses the orientation of the base with respect to the inertial frame. This

model arbitrarily employs the common 1–2–3 rotation sequence shown in Equation 5

[46]. Other rotation sequences could just as readily be employed.

cos()cos() cos()sin() cos()sin()sin() sin()sin() cos()cos()sin()

cos()sin() cos()cos() sin()sin()sin() cos()sin() cos()sin()sin()

sin() cos()sin() co

y z x z z x y x z x z y

b y z x z x y z z x x y z

y y x

R

 s()cos()x y

 (5)

The rotation matrix only accounts for the rotational motion of the base. To

account for both the rotational and translational motion, a transformation matrix is

necessary. The transformation matrix of the base is of the general form shown in

Equation 6 and includes the rotation matrix and a 3x1 translation vector r = [x; y; z]

describing the base’s position with respect to the inertial frame.

 74

 0 0 0 1

I b
b

x

R y
T

z

 (6)

Like the base, each of the joints also requires a transformation matrix to describe

the motion of the respective joint. Whereas the transformation matrix of the base relates

its position to the inertial frame, the transformation matrix of each joint relates its

position to the position of the previous joint. The transformation matrices of Joints 2

through n+1 (where n+1 is the end effector) follow the same pattern. Because Joint 1 is

attached to the base, its motion is described based upon its relationship to the base.

Equation 7 shows Joint 1’s transformation matrix, which remains constant throughout

maneuvers. Joint 1 is an estimated 18.3cm from the center of mass (CoM) of the base in

the x direction (the calibration process will help refine this estimate). The 3x3 identity

matrix (31) occupying the top left of Equation 7 is indicative of Joint 1 sharing the same

orientation as the base.

3
1

18.33

1 0

0

0 0 0 1

b
J

cm

T

 (7)

To obtain the transformation matrix of Joint 1 in the inertial frame (I), the

matrices from Equations 6 and 7 are multiplied together (Equation 8). Calculation of the

transformation matrices of subsequent links requires use of DH parameters.

 1 1
I I b

J b JT T T (8)

 75

5. Denavit-Hartenberg (DH) Parameters

Calculating the transformation matrices for the remaining joints (Joints 2 through

n+1) requires recursive application of the DH parameters. The DH parameters are a

convention used to conveniently define successive reference frames, each assigned to a

joint of the manipulator [47]. By this method, any joint reference frame can be ultimately

described in terms of the inertial reference frame. The symbolic representation of the

parameters varies within literature; this thesis employs the symbols d, q, a, . Table 2

lists the parameters and a description of their function, while Figure 61 depicts the

parameters visually.

Table 4. Denavit-Hartenberg Parameters. Adapted from [44].

Parameter Definition

, 1i id Translational distance between the iJ and 1iJ frames along the îk axis

, 1i iq Angle of rotation from îi to 1îi along îk

, 1i ia Distance along the common normal between îk and 1îk

, 1i i Angle of rotation from îk to 1îk along 1îi

Figure 61. Visual Depiction of the Denavit-Hartenberg Parameters. Source: [44].

The generic form of the DH transformation matrix is given in Equation 9 [47].

Each joint requires its own DH transformation matrix. Since each joint is rigidly affixed

to the previous link its parameters are dependent upon that link’s position at any step in

the numerical simulation.

 76

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1

cos() sin()cos sin()sin cos()

sin() cos() cos cos()sin sin()

0 sin cos

0 0 0 1

n n n n n n n

n n n n n n n

n n n

q q q c q

q q q c q
DH

d

 (9)

In the case of a 3DOF, planar manipulator, the generic form shown above

simplifies greatly. First, the MARSMAN is unable to translate along the z axis, which

makes 0d throughout the simulation. Second, the z axes of all joints are parallel

(pointing upward), so rotation about the x axis is never necessary when aligning reference

frames. Thus, 0 throughout the simulation, and the DH matrix simplifies to the form

shown in Equation 10.

1 1 1

1 1 1

cos() 1 0 cos()

sin() 1 0 sin()

0 0 1 0

0 0 0 1

n n n

n n n

q c q

q c q
DH

 (10)

With the DH matrix established, calculating the transformation matrices of Joints

2–4 in the inertial reference frame is only a matter of matrix multiplication. However,

because the DH parameters are updated whenever a joint moves, this multiplication

operation must take place numerous times. Equation 11 provides the equations for the

Joint 2–4 and the end effector transformation matrices. In the kinematic calibration

process, the transformation matrix of the end effector EET is the only portion that requires

further manipulation.

2 1 1

3 2 2 1 1 2

4 3 3 1 1 2 3

4 4 1 1 2 3 4

J J J

J J J J J J

J J J J J J J

EE J J J J J J J

T T DH

T T DH T DH DH

T T DH T DH DH DH

T T DH T DH DH DH DH

 (11)

 77

6. Link Transformation Matrices

Transformation matrices for the manipulator links are calculated much the same

as the transformation matrices of the joints. The transformation matrix of Link 1 (1iJ
LiT)

resides in the reference frame of the i+1 joint [23]. The vector b is the vector from the

center of mass of Link i to the i+1 joint and accounts for the translational motion of the

link just as the vector r accounted for the translational motion of the spacecraft base in

the base transformation matrix. Since the ith link rotates with the (i+1)th joint, the portion

of the transformation matrix that describes the link’s rotation is simply a 3x3 identity

matrix (Equation 12). To obtain the transformation matrix of a link in the inertial frame

()I
LiT , 1iJ

LiT from Equation 12 is multiplied by 1
I

JT (Equation 13).

1 31

0 0 0 1

i

i

i

i

L
x
L

J y
Li L

z

b

b
T

b

 (12)

1

1

i

i

JI I
Li J LiT T T

 (13)

C. DYNAMICS OVERVIEW

At this point in the mathematical model, all of the parameters necessary for the

kinematic calibration are computed, and a discussion of the property known as “twist” is

necessary. Broadly, the twist vector of a link (it) compacts the angular and linear

velocities as shown in Equation 14 [48].

i
i

i

t
r

 (14)

The model, Kinematic_Serial.m, continues by calculating the twist propagation

matrices (ijB and 0)iB , the velocity transformation matrix 0()P , and the twist propagation

 78

vectors ()ip . These parameters are important for the characterization of the system

dynamics. The twist vector, then, follows the relationship given in Equation 15 [48].

 i ij j i it B t p q
 (15)

1. Twist Propagation Matrices (ijB and 0iB)

The 6x6 twist propagation matrix ijB accounts for angular and linear velocities of

pairs of joints by taking the positional difference ()j ir r of successive joints and turning

that vector into a 3x3 skew symmetric matrix jir [48]. Similarly, the twist propagation

matrix 0iB accounts for the angular and linear velocities between the ith link and the base

0()ir r or 0ir . Interestingly, the skew symmetric functionality is not built into MATLAB

as an organic function, so the in Appendix H: SkewSym.m was again employed to

convert the jir and 0ir vectors into the necessary form. The form of ijB is shown in

Equation 16 where 31 denotes a 3x3 identity matrix and 30 denotes a 3x3 zero matrix [48].

The form of 0iB is the same with the exception that 0ir replaces jir .

3 3

3

0
ij

ji

I
B

r I

 (16)

2. Velocity Transformation Matrix 0()P and Twist Propagation Vector

()mp

The velocity transformation matrix accounts for the twisting effects of the

spacecraft base on the system dynamics. It is shown in Equation 17, “a 6x6 matrix that

contains the base-spacecraft rotation matrix” in the inertial frame [48].

0
0

3

0

0

I
LR

P
I

 (17)

 79

The twist propagation vectors account for the twisting effects of each joint on the

system dynamics. An explanation of the twist propagation vector requires introduction of

the , , ,i i ir l e and gi vectors. Figure 62 depicts these vectors pictorially.

Figure 62. Depiction of Dynamic Model Vectors: Source: [48].

Fortunately, these vectors do not require new calculations; they are made by

parsing pieces from already existing transformation matrices. For example, ir is the first

three terms of fourth column of the ith link transformation matrix (as seen previously) and

accounts for the link’s translational motion in inertial space; in other words, ir is the

vector from the origin of the inertial frame to the center of mass of the ith link. The vector

il is similar to ir but comes from the joint transformation matrix (instead of the link

transformation matrix) in the inertial frame. It accounts for the joint’s translational

motion in inertial space and represents the vector from the origin of the inertial frame to

the origin of the ith joint reference frame. The vector e gives the orientation of the joint’s

rotation axis (the first three rows of the third column of each joint transformation matrix).

In the planar case, e is simply a unit vector indicating rotation about the z axis. Finally,

the geometric vector gi is the difference between ir and il . Since the joints in this

experiment are revolute, the magnitude of gi does not change. With these four vectors

 80

defined, the manipulator twist propagation vector (mp), is calculated as shown in

Equation 18 [48].

i
i

i i

e
p

e g

 (18)

D. KINEMATIC CALIBRATION

The explanation thus far has dealt with the mathematical manner in which the

nominal kinematics of the system are calculated largely via Kinematic_Serial.m and its

supporting functions. The kinematic calibration process is primarily concerned with using

the model and the experimentally measured position of the end effector to refine the

system parameters. To that end, the end effector was measured in a series of poses.

With the four-link manipulator attached to the base spacecraft and floating on the

monolith, the manipulator links were given a number of random commands (m).

Following each command, the state of the end effector (xEE) was measured using the

VICON system, and the measurements of all joint angles (as read by the driver and

passed through UDP to Simulink) were recorded in an mxn matrix (q). When combined

with the VICON measurements of the base spacecraft position (q0), the homogeneous

transformation matrix describing the end effector position (TEE) can be solved for

numerically. From this, the x and y translational and the z rotational components of the

end effector in the inertial frame are extracted.

Based on the kinematic model’s estimates of the end effector state, small

variations were induced into the x, y, and z measurements to see how much a small

change in each parameter would affect the output of the kinematic model (k). These

partial derivatives were collected into the kinematic calibration matrix (), which is of

the general form shown in Equation 19. Again, the planar case simplifies the calculations.

The parameters d and do not change over time, so they are inconsequential to the

calculations. The q parameter for all four joints and the a parameters for all four links,

however, must be incrementally adjusted to properly tune the joint measurements.

 81

Further, refinement of the location of Joint 1 with respect to the base’s center of mass is

necessary, so the parameters , 1 , 1 , 1, ,B J B J B Jx y must be similarly manipulated.

 , 1 , 1 , 1B J B J B Jk a k d k x k y k (19)

With each iteration, the nominal end effector state vector (nx) was compared to

the experimentally measured end effector state vector (mx) and the differences compiled

into the matrix x (Equation 20) [47].

 m nx x x (20)

The matrix is a combination of the of the kinematic calibration matrix ()

and the nominal/measured differences (x) as shown in Equation 20. An iterative batch

least-squares method was used to drive down the values of , the “parameter

variations with respect to the nominal values” [47]. When the least-squares solution

returned a vector within a pre-determined tolerance (Equation 21), the solution

provided insight into how much the estimated parameters, varied from the true system

behavior.

 1T T x

 (21)

E. DYNAMIC CALIBRATION

1. Overview

While the kinematic calibration concerns itself with refinement of kinematic

parameters, the dynamic calibration concerns itself with refinement of the dynamic

parameters. The two calibration processes work hand-in-hand; the offsets determined by

the kinematic calibration feed the dynamic calibration model as an initial guess. Thus, it

is not possible to complete the dynamics calibration without first completing the

kinematics calibration.

Functionally, both processes share similarities. The same Simulink controller,

VICON system setup, and telemetry data capturing technique was used for the dynamic

 82

calibration. All measurements were taken with the spacecraft/manipulator system in a

stationary position; measurements were not taken while the motors were active or while

the residual vibration from the maneuver was naturally damping out. Unlike the

kinematics calibration, the dynamics calibration required capturing the three sets of

position data both prior to a maneuver and following the maneuver: the initial (01q) and

final (02q) positions of the base, the initial (1iq) and final positions (2iq), and the initial

(1eex) and final (2eex) positions of the end effector. The main script for the dynamics

calibration is in Appendix K: MARSMAN_DynCal, but before proceeding with the

actual calibration, several supporting functions are employed to account for the system

dynamic effects and produce—as an interim objective—the nominal state vector of the

base-manipulator system 0 0 0(, ,)x yq q q .

To obtain the nominal state vector, the link and body rotation matrices (LR and

0,R respectively; both are outputs of Kinematics_Serial.m) are first used to construct the

inertia matrices of the base 0()I and manipulator ()mI . The inertia matrices and the twist

propagation matrices (ijB and 0iB , also products of Kinematics_Serial.m) contribute to

the mass composite body matrices of the base 0()M and the manipulator ()mM . With

these, the generalized inertia matrices of the base (0H) and manipulator ()mH can be

calculated and used to determine the derivative of the base position 0()q . The vector is

integrated and variation applied to the components 0 0 0(, ,)x yq q q for construction of the

dynamic calibration matrix () .

2. Inertia Matrices

The link and body rotation matrices (LR and 0R) from Kinematics_Serial.m are

passed to a supporting function (see Appendix L: I_I.m). The body rotation matrix 0()R

is multiplied by the previously defined inertia of the spacecraft to produce the inertia

matrix of the base in the inertial frame 0()I . A series of n inertia matrices in the inertial

frame (one for each link) are calculated based on Equation 22.

 83

I Li I T
mi Li i LiI R I R (22)

3. Mass Matrices

The link mass matrices (iM) and the base mass matrix (0M) takes the general

form shown in Equation 23 and takes into account the inertia (I) and mass (m) properties

of each link. In the figure below, 3,31 represents a 3x3 identity matrix [48].

3,3

0

0 1

I
M

m

 (23)

From a physical perspective, the mass and inertia properties of the links and of the

base effect the twisting of the joints. The mass composite body matrices of the links

()mM take into account these effects (encapsulated in the twist propagation matrices) by

first computing the effects at the nth joint and conducting a backwards recursion. When

the recursion has accounted for all links, mM is the end result (Equation 24). The mass

composite body matrix of the base 0()M is computed using the 0iB twist propagation

matrix and the mass composite body matrix produced by the recursion (Equation 25)

[48]. The code for the function used to conduct these calculations is given in Appendix

M: MCB_Serial.m.

, , , 1 ,
T

m m i ij i m i ij iM M B M B
 (24)

0 0 0 1 0
T
i m iM M B M B

 (25)

4. Generalized Inertial Matrices

With 0 0 0, , , , , ,m ij i mM M B B P p the generalized inertia matrix of the base 0()H and

the generalized coupling inertia matrix of the manipulator and the base 0()mH can be

computed. The script that accomplishes this calculation is given in Appendix N:

GIM_Serial.m. The calculation of 0H follows the matrix multiplication given in Equation

26 [48]. Similarly, the coupling inertia matrix, which accounts for the twists of the joints,

 84

the inertias and masses of the links, and how these affect the inertia of the base-

manipulator system is given in Equation 27 [48].

0 0 0 0
TH P M P

(26)

0 , 0,i 0
T

m m m i iH p M B P
 (27)

5. Determining the Base-Manipulator System State (q)

The goal of calculating inertias, mass composite body matrices, and generalized

inertia matrices is to determine the base-manipulator’s state ()q , which consists of the

base state vector and the manipulator state vector as shown in Equation 28.

0

m

q
q

q

 (28)

The time derivative of the base’s state vector 0()q is calculated by Equation 29,

which is based on the conservation of momentum principle and includes previously

calculated inertia matrices [48]. The manipulator joint velocities (mq) are calculated by

subtracting the initial measured position of each joint from the final measured position of

each joint and dividing by the time of the maneuver (Equation 30). The calculation of q is

accomplished by the function in Appendix O: q_dot_fun.m.

Since the state of the base is only a function of the manipulator path, the

experimentation can exploit a non-holonomic constraint. That is, since only one joint is

moved at a time, the time over which the movement occurs is irrelevant; the system will

achieve the same position whether the maneuver takes one or one hundred seconds. For

the purposes of the MATLAB calculations, all maneuver times ()t were set to be five

seconds. The derivative is simply integrated to obtain the state vector of the system ()q

and the components of 0 0 0(, ,)x yq q q are used in the calibration proper. See Appendix P:

q0_maneuver.m for the integration function.

 85

1
0 0 0

T
m mq H H q

 (29)

, 2 , 1() /m m i m iq q q t
 (30)

6. Inducing Variation, the Dynamic Calibration Proper

As in the kinematics calibration, in the dynamics calibration, small variations are

applied to the parameters of interest—in this case, the b vector and the inertia I. These

small variations are passed through the dynamics model. These partial differentials are

used to form the dynamics calibration matrix, which, like the kinematics calibration

matrix is denoted as . In this case however, depends upon how much the outputs of

the dynamics model ()d change with changes in the parameters of interest (Equation 31).

 d b d I
 (31)

Figure 63. Dynamic Calibration Matrix.

The dynamics model (see Appendix P: q0_maneuver.m) integrates the joint

positions to ultimately predict the coordinates of the system state vector in the inertial

frame. As in the kinematics calibration, and the matrix of nominal/measured

differences ()x are used to construct , and a least-squares method is used to refine

the parameters. Ultimately, the dynamics calibration provided insight into how much the

link inertias ()iI and the b vectors varied between theoretical prediction and experimental

measurement.

F. ANALYSIS

Achieving a valid least-squares solution to the kinematics and then the dynamics

calibration defined the geometry and mass properties of the base-manipulator system. In

the planar case with revolute joints, DH parameter a for the links was calculated to be

0.382532 m for Links 1–3 and slightly shorter for Link 4. This conclusion makes sense

because Link 4 is slightly shorter than the other links due to the lack of an attached joint

or end effector (Figure 64). Also, while a deliberate effort was made to initially position

all joints at a zero angle, the calibration process showed that the joints were actually

 86

slightly offset. Note that Link 1’s joint offset is 0.00 degrees, while the offset of the base

(L0) is 18.21 degrees. Since Joint 1 is attached to the base, it could equivalently be said

that the offset of the base is 0.00 degrees while the offset of Joint 1 is 18.21 degrees.

Overall, the mean position residual of the system was thousandths of a meter, and the

mean angular residual was on the order of hundredths of a degree—indicators that the

kinematic calibration was successful.

Figure 64. MATLAB Results of the Kinematics Calibration.

The dynamics calibration did not provide as precise a solution as the kinematics

calibration. The inertias of the links were all calculated to be the same, and the b vectors,

with the exception of the shorter Link 4 were also determined to be the same (Figure 65).

The mean and standard deviation of the data set, however, were considerably larger than

seen in the kinematics portion. This decrease in precision is partially due to the almost

imperceptible motion of the base due to Link 4’s motion, and sensitivity of the system to

residual motion after the cessation of movement commands. During experimentation, it

was noticed that the system tended to drift after it should have come to a stable stop,

possibly due to a misaligned air-pad, a piece of air tubing dragging on the surface of the

table, or slight imperfections on the surface of the monolith.

 87

Figure 65. MATLAB Outputs of the Dynamic Calibration.

 88

THIS PAGE INTENTIONALLY LEFT BLANK

 89

VI. CONCLUSION

A. SUMMARY OF WORK

This thesis built upon several years of work at the Naval Postgraduate School

Spacecraft Robotics Laboratory and took advantage of an established laboratory

environment with a state-of-the-art motion tracking system, granite monolith, and

already-constructed Floating Spacecraft Simulator (FSS) platform. The initial link design

was improved by adopting an all commercial-off-the-shelf hardware components,

changing the communications architecture to one that uses Wi-Fi, and coding more

effective software for the processing of the system’s data. The initial six months of the

effort centered around gaining an understanding of the previous work and the integration

of the new hardware components and software. Glitches in software development caused

significant delay but were ultimately overcome.

With the second link completed, the design improvements were retrofitted onto

the original link, and the third and fourth links were constructed in relatively little time.

With the four-link configuration constructed and attached to the FSS, the kinematic and

dynamic calibration processes began. MATLAB and Simulink tools, which became the

Spacecraft Robotics Toolkit (SPART), were developed and validated via table-top

experimentation. The work for this thesis contributed to three conference papers. Two

were presented at the 6th International Conference on Astrodynamics Tools and

Techniques (ICATT), and an abstract for the third has been accepted for the American

Institute of Aeronautics and Astronautics’ (AIAA) Space and Aeronautics Forum and

Exposition in September 2016 [23], [42], [49]. Additionally, a patent application is being

pursued.

B. FUTURE WORK

Due to the modular nature of the manipulator links, future research can take a

number of different directions. In the near term, however, work will likely continue with

the four-link manipulator configuration.

 90

(1) How Small is Small?

Throughout the literature on the subject, the term “small spacecraft” is used when

describing a spacecraft whose motion is significantly dynamically coupled with the

motion of the manipulator. As discussed in the introduction, the ratio of the base

mass/inertia to the manipulator mass/inertia are useful measures of how heavily the

dynamics are likely to couple. There is, however, no apparent effort to quantify at what

ratios the dynamics become “significantly” coupled. How big does the manipulator have

to be to affect the base dynamics? How small does the manipulator have to be for its

effects to be ignored? With the tools developed in the SRL, this topic could be

investigated via simulation and table-top experimentation.

(2) Explore Manipulator Control Algorithms

The intent of the kinematics and dynamics calibration (and all the proceeding

hardware and software development) was to put in place the pieces for a controllable

manipulator. As a stepping stone, efforts to control the manipulator not from a command

laptop (as done in the experimentation for this thesis) but from the FSS’s onboard

computer are underway. Other areas ripe for investigation include the most effective

manner in which to employ a manipulator with respect to time or power usage; these are

two areas in which optimal control theory could be explored.

The current investigation focused on a four-link serial manipulator, but the

modularity of MARSMAN allows for exploration of different topologies. For example,

with the in-house additive manufacturing capability, a serial manipulator that branches

into multiple arms could be constructed. Further, closed-tree topologies such as two two-

link manipulators working in concert as a pincer could be investigated. These topologies

are significantly more difficult to analyze and require the employment of differential

algebraic equations (DAE). Whatever the unique configuration, different configurations

of the modular links will require adaptations of the kinematics and dynamics calibration

and present their own control challenges

 91

(3) Construct and Integrate an End Effector

This project focused on the construction of the manipulator links themselves, and

the mathematical modeling assumed a notional end effector was attached. An end

effector is necessary for proximity operations that aim to capture a target FSS. A simple

end effector could consist of a Velcro surface mounted to both the target vehicle and the

end of the manipulator. More complex end effectors, like grippers, provide additional

opportunities for hardware construction and software integration. Yale University’s

OpenHand Project provides computer aided drafting (CAD) files for a variety of

manipulators that can be assembled via additive manufacturing. The tendons for the

gripper are constructed by pouring resin into a 3-D printed mold [50]. With a gripper,

rendezvous and capture problems can become an active area of research.

Figure 66. Sample End Effector from the Yale OpenHand Project. Source: [50].

(4) Rendezvous and Capture Operations

With viable control algorithms and an end effector, rendezvous and capture

operations become possible. Initial attempts may consider capturing a stationary

spacecraft with the eventual goal of de-tumbling a spinning FSS, perhaps while

 92

maintaining visual observation via a camera mounted on the base spacecraft. This line of

research is synergistic with the current research efforts at the SRL for FSS-to-FSS

docking. From a guidance, navigation, and control (GNC) perspective, this problem

becomes particularly challenging because it requires not only control of the manipulator

itself but also control of the base spacecraft via its thrusters and reaction wheels.

(5) Hardware Upgrades

The Arduino Wi-Fi shield is no longer in production. As components fail, they

will need to be replaced with a comparable capability. The Raspberry Pi microcontroller

has the potential to replace the Arduino Wi-Fi shield, the Arduino Due, and the RS232

shield because it can serve as microcontroller, create its own ad hoc Wi-Fi network, and

provide the necessary connection ports to the motor driver. The creation of the ad hoc

Wi-Fi network will allow for the links, the FSS, and a telemetry laptop to communicate

directly in a more realistic and reliable manner. With this capability, the D-link router can

be removed from the communications architecture. Further, the Raspberry Pi allows for a

simplified interface to control the end effector and the possibility of attaching a small

camera for use in proximity operations.

(6) The Self-Assembling Manipulator

Apart from organic propulsion, the current design of the manipulator links is such

that they are very nearly miniature FSSs. With modification to the current modular

design, each link could be made to operate independently, and the links themselves could

rendezvous to form a workable manipulator that could then be used to perform a useful

task.

(7) A Real Manipulator Spacecraft

The current base-manipulator system is a test-bed configuration never intended to

fly in space. While the development of a flight-worthy base-manipulator system is

outside the current scope of the SRL’s research efforts, the development of such a

concept could easily provide research material for students in structures, thermal systems,

power systems, and GNC. The development of such a spacecraft would be a worthy of

exploration during NPS’s capstone design sequence.

 93

C. RESEARCH SIGNIFICANCE

The research conducted for this thesis is significant in several ways. As

mentioned previously, the initial development of a modular robotic manipulator link in

2014 was the first of its kind. To the knowledge of the author, the subsequent hardware

and software improvements and the construction of the four-link manipulator from

modular links is unique in academia. The kinematic and dynamic models, elucidated by

SRL writings such as [48], was implemented via MATLAB and, along with the

calibration code, made publicly available to anyone wishing to investigate spacecraft with

attached manipulators—another first-of-its-kind effort to share knowledge with the larger

space robotics community. The research work over the past year has contributed to two

published conference papers; a third conference paper abstract based on the work has

been accepted for the fall of 2016. Finally, the manipulator is being used to teach

graduate students robotics and multi-body mechanics at NPS.

Ultimately, this project implemented the highly non-linear dynamical model of a

small spacecraft with an attached robotic manipulator consisting of multiple modular

links. The concept was validated through a table-top experimentation campaign that

proved the concept of controlling multiple links independently to complete the kinematic

and dynamic calibrations. The experimental framework will allow further exploration

into spacecraft/robotic mechanics, control theory, and operational concepts ranging from

docking and capture maneuvers to spacecraft servicing. The beauty of the MARSMAN

system is that a new piece of hardware does not need to be funded and built each time a

new line of inquiry appears. The modular links can be reconfigured for any number of

mission scenarios that may be of interest to civil, military, or commercial space entities.

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

APPENDIX A. SPARKFUN HX711 LOAD CELL AMPLIFIER OPEN-
SOURCE HEADER FILE [51]

#ifndef HX711_h
#define HX711_h

#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif

class HX711
{
 private:
 byte PD_SCK; // Power Down and Serial Clock
Input Pin
 byte DOUT; // Serial Data Output Pin
 byte GAIN; // amplification factor
 long OFFSET; // used for tare weight
 float SCALE; // used to return weight in grams,
kg, ounces, whatever

 public:
 // define clock and data pin, channel, and gain
factor
 // channel selection is made by passing the
appropriate gain: 128 or 64 for channel A, 32 for channel B
 // gain: 128 or 64 for channel A; channel B works
with 32 gain factor only
 HX711(byte dout, byte pd_sck, byte gain = 128);

 virtual ~HX711();

 // check if HX711 is ready
 // from the datasheet: When output data is not
ready for retrieval, digital output pin DOUT is high.
Serial clock
 // input PD_SCK should be low. When DOUT goes to
low, it indicates data is ready for retrieval.
 bool is_ready();

 // set the gain factor; takes effect only after a
call to read()

 96

 // channel A can be set for a 128 or 64 gain;
channel B has a fixed 32 gain
 // depending on the parameter, the channel is
also set to either A or B
 void set_gain(byte gain = 128);

 // waits for the chip to be ready and returns a
reading
 long read();

 // returns an average reading; times = how many
times to read
 long read_average(byte times = 10);

 // returns (read_average() - OFFSET), that is the
current value without the tare weight; times = how many
readings to do
 double get_value(byte times = 1);

 // returns get_value() divided by SCALE, that is
the raw value divided by a value obtained via calibration
 // times = how many readings to do
 float get_units(byte times = 1);

 // set the OFFSET value for tare weight; times =
how many times to read the tare value
 void tare(byte times = 10);

 // set the SCALE value; this value is used to
convert the raw data to "human readable" data (measure
units)
 void set_scale(float scale = 1.f);

 // set OFFSET, the value that's subtracted from
the actual reading (tare weight)
 void set_offset(long offset = 0);

 // puts the chip into power down mode
 void power_down();

 // wakes up the chip after power down mode
 void power_up();
};

#endif /* HX711_h */

 97

APPENDIX B. SPARKFUN HX711 LOAD CELL AMPLIFIER OPEN-
SOURCE C++ SOURCE CODE FILE [51]

#include <Arduino.h>
#include <HX711.h>

HX711::HX711(byte dout, byte pd_sck, byte gain) {
 PD_SCK = pd_sck;
 DOUT = dout;

 pinMode(PD_SCK, OUTPUT);
 pinMode(DOUT, INPUT);

 set_gain(gain);
}

HX711::~HX711() {

}

bool HX711::is_ready() {
 return digitalRead(DOUT) == LOW;
}

void HX711::set_gain(byte gain) {
 switch (gain) {
 case 128: // channel A, gain factor 128
 GAIN = 1;
 break;
 case 64: // channel A, gain factor 64
 GAIN = 3;
 break;
 case 32: // channel B, gain factor 32
 GAIN = 2;
 break;
 }

 digitalWrite(PD_SCK, LOW);
 read();
}

long HX711::read() {
 // wait for the chip to become ready
 while (!is_ready());

 98

 byte data[3];

 // pulse the clock pin 24 times to read the data
 for (byte j = 3; j--;) {
 for (char i = 8; i--;) {
 digitalWrite(PD_SCK, HIGH);
 bitWrite(data[j], i, digitalRead(DOUT));
 digitalWrite(PD_SCK, LOW);
 }
 }

 // set the channel and the gain factor for the next
reading using the clock pin
 for (int i = 0; i < GAIN; i++) {
 digitalWrite(PD_SCK, HIGH);
 digitalWrite(PD_SCK, LOW);
 }

 data[2] ^= 0x80;

 return ((uint32_t) data[2] << 16) | ((uint32_t)
data[1] << 8) | (uint32_t) data[0];
}

long HX711::read_average(byte times) {
 long sum = 0;
 for (byte i = 0; i < times; i++) {
 sum += read();
 }
 return sum / times;
}

double HX711::get_value(byte times) {
 return read_average(times) - OFFSET;
}

float HX711::get_units(byte times) {
 return get_value(times) / SCALE;
}

void HX711::tare(byte times) {
 double sum = read_average(times);
 set_offset(sum);
}

void HX711::set_scale(float scale) {

 99

 SCALE = scale;
}

void HX711::set_offset(long offset) {
 OFFSET = offset;
}

void HX711::power_down() {
 digitalWrite(PD_SCK, LOW);
 digitalWrite(PD_SCK, HIGH);
}

void HX711::power_up() {
 digitalWrite(PD_SCK, LOW);
}

 100

THIS PAGE INTENTIONALLY LEFT BLANK

 101

APPENDIX C. ONBOARDLINK.INO

// Arduino On-board Software controlling a manipulator link (OnBoardLink.ino)
// Sends telemetry and receives commands via TCP/UDP.
// Developed by Dr. Josep Virgili-Llop and CPT Jerry Drew

// Through UDP the manipulator sends:
// * Position in rad.
// * Angular velocity in rad/s.
// * Joint torque in Nm
//
// The manipulator accepts velocity commands in rad/s.
//

//--- CODE ---//

//Include libraries
#include <SPI.h>
#include <WiFi.h>
#include <WiFiUdp.h>
#include "HX711.h" //for load cell amp to read torque

//Main loop time in ms
#define LOOP_TIME 100 // 10 Hz

//Wireless Parameters
int stat_w = WL_IDLE_STATUS;
#define ssid "dlink_srl" // Network SSID (name)
#define FSS_IP "192.168.0.133" // IP of the FSS
#define localPort 4097 // Local port to listen on

//FSS ports (will be assigned depending on mac address)
#define FSS_PORT_A 25010
#define FSS_PORT_B 25020
#define FSS_PORT_C 25030
#define FSS_PORT_D 25040
byte mac[6]; //Holds Wi-Fi shied mac address
int FSS_port= FSS_PORT_A; //Holds FSS port

//Mac addresses of WIfi shields (in reverse!)
#define MAC_A 0xb1,0xc5,0x01,0x0e,0xc4,0x78
#define MAC_B 0x7a,0xfb,0x01,0x0e,0xc4,0x78
#define MAC_C 0x49,0xc5,0x01,0x0e,0xc4,0x78
#define MAC_D 0x47,0xc5,0x01,0x0e,0xc4,0x78

 102

#define calibration_factor 1.0
#define DOUT 8 //Torque sensor DOUT pin #
#define CLK 9 //Torque sensor CLK pin #

//Motor Parameters
#define POS_Conversion 624339 // Conversion counts per radian
#define VEL_Conversion 624339 // Conversion counts/s to radians per second
#define CUR_Conversion 100 // Conversion from driver response to Amperes
#define COUNT_OFFSET 0 // Count offset to 0 degrees.

//Joint limits
#define POS_LIMIT 1.4835 // 85 degrees

//UDP packet buffer
byte packetBuffer[255]; // Buffer to hold incoming packet

//Receiver buffer for Serial to driver
String DriverString;

//Create Wi-Fi UDP class
WiFiUDP Udp;

// Definition of the data class that will hold the data to reveieve and send
typedef union {
 float floatPrec;
 byte binary[4];
} binaryFloat;

//Loop variables
binaryFloat Pos, Velocity, Torque, CS; //Data variables

//Torque sensor sariable
HX711 scale(DOUT, CLK); //defining a variable of the class HX711 that is defined in
the X711.h library

//--- SETUP ---//
void setup() {

 //Initialize serial (debug)
 Serial.begin(9600);
 //Initialise serial port with Driver
 Serial2.begin(9600);
 Serial2.setTimeout(20); //
 Serial.println("Serial to Driver initialized");

 103

 //Wait 5 s to allow Driver power-up
 delay(5000);

 //Initialize Driver
 DriverSetup();

 //Initialize Wifi
 WifiSetup();

 //Initialize UPD listening
 UDPSetup();

 //Torque Setup
 Serial.println("Initializing Torque Sensor");
 scale.set_scale(calibration_factor); //This value is obtained by using the
SparkFun_HX711_Calibration sketch
 scale.tare(); //Assuming there is no weight on the scale at start up, reset the scale to 0

 Serial.println("Initalization Complete");
}

//--- MAIN LOOP ---//
float command=0;
void loop() {

 //Initial loop time
 int t_init = millis();

 //Recieve velocity commands
 if (Udp.parsePacket()){
 //Read command
 command=VelCommand();
 //Within limits -> execute motion
 if (abs(Pos.floatPrec)<POS_LIMIT) {execute(command);}
 else if (Pos.floatPrec>POS_LIMIT & command<0) {execute(command);}
 else if (Pos.floatPrec<-POS_LIMIT & command>0) {execute(command);}
 }

 //Check if the joint limits are exceeded
 if (Pos.floatPrec>POS_LIMIT & Velocity.floatPrec>0) {execute(0);} //Exceeded limits
-> stop motion
 else if (Pos.floatPrec<-POS_LIMIT & Velocity.floatPrec<0) {execute(0);} //Exceeded
limits -> stop motion

 104

 //Get Torque
 float reading = scale.read_average(1);
 Torque.floatPrec = (reading-8388608)/487848.1*0.33;
 //Get joint position
 Pos.floatPrec=GetPos();
 //Get joint velocity
 Velocity.floatPrec=GetVelocity();

 //Compute checksum
 CS.floatPrec = 100-(Torque.floatPrec*100+Pos.floatPrec*100+Velocity.floatPrec*100);

 //Send data via UDP
 Udp.beginPacket(FSS_IP, FSS_port);
 //Udp.write(Time.binary,4);
 Udp.write(Pos.binary,4);
 Udp.write(Velocity.binary,4);
 Udp.write(Torque.binary,4);
 //Udp.write(Current.binary,4);
 Udp.write(CS.binary,4);
 int Udp_send = Udp.endPacket();

 //Print all the variables in a single line
 Serial.print("Angle: ");
 Serial.print(Pos.floatPrec*180/3.1415,4);
 Serial.print("deg, ");
 Serial.print("Velocity: ");
 Serial.print(Velocity.floatPrec*180/3.1415,4);
 Serial.print("deg/s, ");
 Serial.print("Torque: ");
 Serial.print(Torque.floatPrec,4);
 Serial.print("Nm, ");
 Serial.print("UDP Send: ");
 Serial.print(Udp_send);
 Serial.print(", Exec Time: ");
 Serial.print(millis()-t_init);
 Serial.println("ms");

 //Wait until total loop time has elapsed (loops executes at a constant rate)
 while ((LOOP_TIME+t_init)>millis()) {}
}

//--- FUNCTIONS ---//

void WifiSetup() {

 105

 // check for the presence of the shield:
 delay(1000); //Wait for WiFi to boot up
 if (WiFi.status() == WL_NO_SHIELD) {
 Serial.println("WiFi shield not present");
 // don't continue:
 while (true);
 }

 String fv = WiFi.firmwareVersion();
 Serial.print("Wifi firmware version: ");
 Serial.println(fv);
 if (fv != "1.1.0")
 Serial.println("Please upgrade the firmware.");

 // attempt to connect to Wifi network:
 while (stat_w != WL_CONNECTED) {
 Serial.print("Attempting to connect to SSID: ");
 Serial.println(ssid);
 // Connect to network.
 stat_w = WiFi.begin(ssid);
 //Print result (for debugging)
 Serial.print("Wifi status: ");
 Serial.println(stat_w);

 // wait 2 seconds for connection:
 delay(2000);
 }
 Serial.println("Connected to wifi");

 //Get your shield mac address
 WiFi.macAddress(mac);

 // Assign FSS port based on MAC address
 byte mac_a[6] = {MAC_A};
 byte mac_b[6] = {MAC_B};
 byte mac_c[6] = {MAC_C};
 byte mac_d[6] = {MAC_D};
 if (memcmp(mac,mac_a,6)==0) {
 FSS_port = FSS_PORT_A;
 }
 else if (memcmp(mac,mac_b,6)==0) {
 FSS_port = FSS_PORT_B;
 }
 else if (memcmp(mac,mac_c,6)==0) {

 106

 FSS_port = FSS_PORT_C;
 }
 else if (memcmp(mac,mac_d,6)==0) {
 FSS_port = FSS_PORT_D;
 }

 //Print wifi variables
 printWifiStatus();
}

//Display WIFI information and get Mac address
void printWifiStatus() {

 // print the SSID of the network you're attached to:
 Serial.print("SSID: ");
 Serial.println(WiFi.SSID());

 // print your WiFi shield's IP address:
 IPAddress ip = WiFi.localIP();
 Serial.print("IP Address: ");
 Serial.println(ip);

 // print your WiFi shield's MAC address:
 Serial.print("MAC: ");
 Serial.print(mac[5],HEX);
 Serial.print(":");
 Serial.print(mac[4],HEX);
 Serial.print(":");
 Serial.print(mac[3],HEX);
 Serial.print(":");
 Serial.print(mac[2],HEX);
 Serial.print(":");
 Serial.print(mac[1],HEX);
 Serial.print(":");
 Serial.println(mac[0],HEX);

 // print the target FSS port
 Serial.print("FSS port: ");
 Serial.println(FSS_port);

 // print the received signal strength:
 long rssi = WiFi.RSSI();

 107

 Serial.print("signal strength (RSSI):");
 Serial.print(rssi);
 Serial.println(" dBm");
}

//Setup the Driver to Velocity Mode
void DriverSetup() {

 //Set all the variables required
 Serial.println("Setting up Current Mode.");

 //Set acceleration rate
 Serial.println("Setting acceleration rate.");
 Serial2.print("s r0x36 ");
 Serial2.print(50000); //Acceleration in counts/second^2
 Serial2.print("\n");
 DriverString = Serial2.readStringUntil('\r');
 Serial.println(DriverString);

 //Set decceleration rate
 Serial.println("Setting decceleration rate.");
 Serial2.print("s r0x37 ");
 Serial2.print(50000); //Decceleration in counts/second^2
 Serial2.print("\n");
 DriverString = Serial2.readStringUntil('\r');
 Serial.println(DriverString);

 //Set Velocity
 Serial.println("Setting Velocity");
 Serial2.print("s r0x2f ");
 Serial2.print(0); //Velocity in
 Serial2.print("\n");
 DriverString = Serial2.readStringUntil('\r');
 Serial.println(DriverString);

 //Enable Amplifier
 Serial.println("Enable Amplifier.");
 Serial2.print("s r0x24 11\n");
 DriverString = Serial2.readStringUntil('\r');
 Serial.println(DriverString);
}

//Get position joint data from the driver
float GetPos() {

 108

 //Send command to driver asking for motor position.
 Serial2.print("g r0x32\n");
 //Read driver reply
 DriverString = Serial2.readStringUntil('\r');
 //Remove the first "v"
 DriverString = DriverString.substring(2);
 //Conver it to an angle in rad
 return (DriverString.toFloat()-COUNT_OFFSET)/POS_Conversion;
}

//Get joint velocity data from the driver
float GetVelocity() {

 //Send command to driver asking for motor velocity.
 Serial2.print("g r0x18\n");
 //Read driver reply
 DriverString = Serial2.readStringUntil('\r');
 //Remove the first "v"
 DriverString = DriverString.substring(1);
 //Conver it to an angular velocity in rad/s
 return DriverString.toFloat()/10/VEL_Conversion;
}

//Get joint velocity data from the driver
float GetCurrent() {

 //Send command to driver asking for motor current.
 Serial2.print("g r0x0c\n");
 //Read driver reply
 DriverString = Serial2.readStringUntil('\r');
 //Remove the first "v"
 DriverString = DriverString.substring(1);
 //Convert it to a current in Amps
 return DriverString.toFloat()/CUR_Conversion;

}

//Send velocity command to driver
void execute(float Velocity) {

 //Set Velocity
 Serial2.print("s r0x2f ");
 Serial2.print(Velocity*VEL_Conversion*10,0); //Velocity in 0.1 counts per second
 Serial2.print("\n");

 109

 //Read driver response
 DriverString = Serial2.readStringUntil('\r');
}

//Initialize UDP connection
void UDPSetup(){

 Serial.println("Starting connection to server...");
 // if you get a connection, report back via serial:
 if (Udp.begin(localPort) == 1) Serial.println("started");
 else Serial.println("failed");
}

//Read velocity command from UDP
float VelCommand() {

 //Read velocity command from UDP stream
 binaryFloat Velocity;
 Udp.read(Velocity.binary,4);
 return Velocity.floatPrec;
}

 110

THIS PAGE INTENTIONALLY LEFT BLANK

 111

APPENDIX D. MARSMAN_DRIVER_LOAD.CCX

14
1
95,0,Host Config State,2:-1:0:1792:-1:-1:150:-1:-1:-1:-1:-
1:-1:-1:-1:-1:-1:-1:-1:-1
87,0,Amp Family,3
40,0,Motor Type,48
89,0,Amp Max Voltage,910
84,0,Amp ISense,1050
83,0,Amp Continuous Current,300
82,0,Amp Peak Current,900
88,0,Amp Peak Current Time,1000
0,0,Current Cp,55
1,0,Current Ci,19
2,0,Programmed Current Command,0
19,0,Analog Input Scale,425
1a,0,Analog Input Offset,0
21,0,User Peak Current Limit,425
22,0,User Continuous Current Limit,225
23,0,User Peak Current Time Limit,1000
24,0,Desired State,11
26,0,Analog Input Deadband,0
27,0,Velocity Vp,9984
28,0,Velocity Vi,10000
2f,0,Programmed Velocity Command,0
31,0,Velocity Gains Scalor,8
36,0,Velocity Loop Acceleration Limit,500
37,0,Velocity Loop Deceleration Limit,500
39,0,Velocity Fast Stop Ramp,131072
3a,0,Velocity Loop Velocity Limit,131072000
3f,0,Velocity Tracking Time,100
3e,0,Velocity Tracking Window,393216
41,0,Motor Manufacturer,Harmonic Drive Systems
42,0,Motor Model Number,FHA-8C-30-12S17bE
43,0,Motor Units,0
44,0,Motor Inertia,29000
46,0,Motor Brake,1
48,0,Motor Torque Constant,3060
49,0,Motor Resistance,108
4a,0,Motor Inductance,44
4b,0,Motor Peak Torque,13000
4c,0,Motor Continuous Torque,6900
4d,0,Motor Velocity Limit,131072000
4e,0,Motor Wiring,1

 112

53,0,Brake/Stop Delay Time,0
54,0,Motor Brake Delay Time,0
55,0,Motor Brake Activation Velocity,0
56,0,Motor Back Emf Constant,320
6a,0,Commanded Current Ramp,10000
70,0,Output 1 Config,100:4000:0
78,0,Input 1 Config,17
79,0,Input 2 Config,0
7a,0,Input 3 Config,0
7b,0,Input 4 Config,0
7c,0,Input 5 Config,0
7d,0,Input 6 Config,0
80,0,Amp Model Number,DEP-090-09
86,0,Servo Period,4
8a,0,Voltage Sense,2262
92,0,Amp Name,Current
98,0,Function Generator Config,2
99,0,Function Generator Frequency,0
9a,0,Function Generator Amplitude,0
9b,0,Function Generator Duty Cycle,1000
a5,0,Input Configuration Register,0
a7,0,Fault Mask,1567
a8,0,Digital Command Config,0
a9,0,Digital Command Scaling,1
ad,0,Hardware Type,897
ae,0,Current Loop Offset,0
30,0,Position Pp,1000
33,0,Position Vff,16384
34,0,Position Aff,0
45,0,Motor Pole Pairs,5
4f,0,Motor Hall Offset,-60
50,0,Motor Hall Type,0
52,0,Motor Hall Wiring,0
5f,0,Velocity Loop Output Filter,8448:200:0:775:1550:775:-
12774:32763:5813
60,0,Motor Encoder Type,14
61,0,Motor Encoder Units,0
62,0,Motor Encoder Counts,131072
63,0,Motor Encoder Resolution,1000
64,0,Motor Electrical Distance,100000
65,0,Motor Encoder Direction,1
6c,0,Position Capture Control Register,5
71,0,Output 2 Config,100:44007f:0
8e,0,Amp Ref Scale,11220
af,0,Amp Options Register,2
b1,0,Increment Rate,0

 113

b2,0,Commutation Mode,6
ba,0,Position Following Error Limit,131072
bb,0,Position Following Warning Limit,65536
bc,0,Position Tracking Window,32768
bd,0,Position Tracking Window Time,10
c8,0,Trajectory Profile Mode,0
ca,0,Trajectory Position Command,1
cb,0,Trajectory Max Velocity,32768000
cc,0,Trajectory Max Accel,1310720
cd,0,Trajectory Max Decel,1310720
cf,0,Trajectory Abort Decel,6553600
f0,0,Input 1 Debounce Time,0
f1,0,Input 2 Debounce Time,0
f2,0,Input 3 Debounce Time,0
f3,0,Input 4 Debounce Time,0
f4,0,Input 5 Debounce Time,0
f5,0,Input 6 Debounce Time,0
114,0,Velocity Vi Drain,0
10c,0,Network Heart Beat Time,0
10d,0,CANopen Node Guarding Time,0
10e,0,CANopen Node Guarding Life Time Factor,0
109,0,Camming Master Velocity,0
105,0,Camming Configuration,4352
106,0,Camming Forward Delay,0
107,0,Camming Reverse Delay,0
104,0,Phase Init Config,0
be,0,Software Limit Deceleration,655360
e4,0,Phase Init Current,425
e5,0,Phase Init Time,400
58,0,Gear Ratio,65537
b6,0,PWM Deadband,1000
ea,0,Detent Correction Gain,0
57,0,Micro Steps Per Rev.,0
59,0,Hall Velocity Shift,0
5a,0,Multi Mode Port Configuration,1
5b,0,Position Encoder Resolution,4000
5c,0,Position Encoder Direction,0
5d,0,Position Encoder Type,0
67,0,Analog Encoder Shift,0
6b,0,Velocity Loop Command Filter,-
7936:200:0:775:1550:775:-12774:32763:5813
6f,0,PWM Mode,0
72,0,Output 3 Config,0:0:0
73,0,Output 4 Config,0:0:0
7e,0,Input 7 Config,0
7f,0,Input 8 Config,0

 114

b3,0,Analog Encoder Scale,6667
b8,0,Positive Software Limit,10000
b9,0,Negative Software Limit,1000
bf,0,Home Current Delay Time,250
c1,0,Node ID configuration,1024
c2,0,Home Configuration,512
c3,0,Home Velocity Fast,3276800
c4,0,Home Velocity Slow,655360
c5,0,Home Accel/Decel,655360
c6,0,Home Offset,0
c7,0,Home Current,113
ce,0,Trajectory Max Jerk,26214400
d0,0,Input 9 Config,0
d1,0,Input 10 Config,0
d2,0,Input 11 Config,0
d3,0,Input 12 Config,0
d8,0,Regen Resistance,0
d9,0,Regen Continuous Power,0
da,0,Regen Peak Power,0
db,0,Regen Peak Power Time,0
e1,0,Regen Resistor Model Number,None
e3,0,Position Loop Gains Multiplier,100
e8,0,uStep Holding Current,0
e9,0,uStep Run To Hold Time,0
f6,0,Input 7 Debounce Time,0
f7,0,Input 8 Debounce Time,0
f8,0,Input 9 Debounce Time,0
f9,0,Input 10 Debounce Time,0
fa,0,Input 11 Debounce Time,0
fb,0,Input 12 Debounce Time,0
103,0,Network address Input Map,0
11a,0,Amp Scaling Config,0
121,0,Network Options,0
123,0,Motor Position Wrap Value,0
124,0,Load Position Wrap Value,0
125,0,MACRO Amplifier's Encoder Capture Config,0
127,0,Gain Scheduling Config,0
12a,0,Motor Encoder Options,301994001
12b,0,Position Encoder Options,1
12d,0,Analog Input Filter,-7936:200:0:775:1550:775:-
12774:32763:5813
10f,0,Registration Offset For Pulse and Direction,0
13c,0,Minimum PWM Pulse Width PWM Position Mode,1000
13d,0,Maximum PWM Pulse Width PWM Position Mode,2000
100,0,CANopen limit mask,25364352
94c,0,basic host cfg,33

 115

APPENDIX E. VICON_CALIBRATE.M

% Vicon_Calibrate.m captures the VICON data and saves it to an m-file
% Developed by multiple users within the Spacecraft Robotics Laboratory
% Adapted by Dr. Josep Virgili-Llop and CPT Jerry Drew

% The data is saved in the following format:
% [X [m], Y [m], Z [m], EulerX [rad], EulerY [rad], EulerZ [rad], Time
[s]]
%
% Needs the Vicon SDK added in the path for it to work
(http://www.vicon.com/products/software/datastream-sdk).

%--- Clean and Clear ---%
clc
clear all
close all

%--- Object Name ---%

%Vicon objects names
obj_name = {'Prime2','EndEffector'}; %Prime2 is FSS

%--- Load Vicon Matlab SDK ---%
fprintf('Loading Vicon SDK...\n');
addpath('C:\Program Files\Vicon\DataStream SDK\Win64\MATLAB')
Client.LoadViconDataStreamSDK();
fprintf('done\n');

%--- Create Client and connect to localhost ---%

%Create Client
ViconClient = Client();

%Connect to localhost (where Tracker is streaming the data)
HostName = 'localhost:801';
fprintf('Connecting to %s ...', HostName);
while ~ViconClient.IsConnected().Connected
 % Direct connection
 ViconClient.Connect(HostName);
end

%--- Configure Vicon Client ---%

% Enable some different data types
ViconClient.EnableSegmentData();
ViconClient.EnableMarkerData();
ViconClient.EnableUnlabeledMarkerData();
ViconClient.EnableDeviceData();

 116

%Check if data types are enabled
fprintf('Segment Data Enabled: %d\n',
ViconClient.IsSegmentDataEnabled().Enabled);
fprintf('Marker Data Enabled: %d\n',
ViconClient.IsMarkerDataEnabled().Enabled);

% Set the streaming mode
ViconClient.SetStreamMode(StreamMode.ClientPull);
ViconClient.SetAxisMapping(Direction.Forward, ...
 Direction.Left, ...
 Direction.Up); % Z-up

%--- Capture Data ---%

%A dialog to stop the loop
MessageBox = msgbox('Stop Capture', 'Vicon data capture');
%A dialog to capture data
CaptureBox = msgbox('Capture', 'Vicon data capture');

%Initialize data structure
EE_meas=[]; %state vector of end effector [3x1]
q0_meas=[]; %state vector of base [3x1]

% Loop until the message box is dismissed
while ishandle(MessageBox)

 %Update message box
 drawnow;

 % Get frame
 while ViconClient.GetFrame().Result.Value ~= Result.Success

 end

 for i=1:length(obj_name)
 %Retrieve object values
 Output_GetSegmentGlobalTranslation =
ViconClient.GetSegmentGlobalTranslation(char(obj_name(i)),
char(obj_name(i)));
 Output_GetSegmentGlobalRotationEulerXYZ =
ViconClient.GetSegmentGlobalRotationEulerXYZ(char(obj_name(i)),
char(obj_name(i)));

 %Save data
 data(i,1:3) = [Output_GetSegmentGlobalTranslation.Translation(
1)/1e3, ... %x
 Output_GetSegmentGlobalTranslation.Translation(2)/1e3,
... %y
 Output_GetSegmentGlobalRotationEulerXYZ.Rotation(3)];
%theta z

 %Display latest data

 117

 if i==1; clc; end
 fprintf('Object: %s\n',char(obj_name(i)));
 fprintf('Position x,y,z: [%7.3f,%7.3f]
[m]\n',data(i,1),data(i,2));
 fprintf('Euler Angles : [%7.2f] [deg]\n',data(i,3)*180/pi);
 end

 %Compute Manipulator data
 q0 = data(1,:);
 EE = data(2,:);

 if not(ishandle(CaptureBox))
 q0_meas(end+1,1:3)=q0;
 EE_meas(end+1,1:3)=EE;
 CaptureBox = msgbox('Capture', 'Vicon data capture');
 end

end

%--- Disconnect and unload ---%

% Disconnect and dispose
fprintf('Disconnect...\n');
ViconClient.Disconnect();
% Unload the SDK
fprintf('Unload SDK...\n');
Client.UnloadViconDataStreamSDK();

%--- Ask to save data ---%

%Generate filename
filename=sprintf('Vicon_%s_%s.mat','MARSMAN_CAL',datestr(now,30));
uisave({'q0_meas','EE_meas'},filename);

 118

THIS PAGE INTENTIONALLY LEFT BLANK

 119

APPENDIX F. KINEMATICS_SERIAL.M

% Kinematics_Serial.m computes the kineamtics of a serial manipulator.
% Developed by Dr. Josep Virgili-Llop

function
[RJ,RL,r,l,e,t0,tm,Bij,Bi0,P0,pm,TEE]=Kinematics_Serial(R0,r0,qm,q0dot,
qmdot,data)
% Input ->
% R0 -> Rotation matrix from the base-spacecraft to the inertial
frame.
% r0 -> Position of the base-spacecraft to the inertial frame.
% qm -> Manipulator joint varibles.
% q0dot -> Base-spacecraft velocities [angular velocity in body,
linear
% velocity in inertial].
% qmdot -> Manipulator joint rates.
% data -> Manipulator data.
% data.n -> Manipulator number of joints and links.
% data.base -> Base-spacecraft data
% data.base.T_L0_J1 -> Homogeneous transformation of the
first
% joint w.r.t. the base-spacecraft.
% data.man -> Manipulator data.
% data.man(i).DH -> DH parameters of the ith joint.
% data.man(i).type -> Type of joint. type==0 for revolute,
% otherwise prismatic.
% data.man(i).b -> Vector from the ith link to the following
% joint i+1.
%
% Output ->
% RJ -> Joint 3x3 rotation matrices.
% RL -> Links 3x3 rotation matrices.
% r -> Links positions.
% l -> Joints positions.
% e -> Joints rotations axis.
% t0 -> Base-spacecraft twist vector
% tm -> Manipulator twist vector.
% Bij -> Twist-propagation matrix (for manipulator i>0 and j>0).
% Bi0 -> Twist-propagation matrix (for i>0 and j=0).
% P0 -> Base-spacecraft twist-propagation vector.
% pm -> Manipulator twist-propagation vector.
% TEE -> End-Effector Homogeneous transformation matrix.

%=== LICENSE ===%

%=== CODE ===%

%--- Number of links and Joints ---%
n=data.n;

%--- Homogeneous transformation matrices ---%

 120

%Pre-allocate homogeneous transformations matrices
TJ=zeros(4,4,n+1);
TL=zeros(4,4,n);
%Base-spacecraft
T0 = [R0,r0;zeros(1,3),1];
%First Joint
TJ(1:4,1:4,1) =T0*data.base.T_L0_J1;
%Forward recursive for rest of joints and links
for i=1:n
 %Compute Rotation matrix and translation vector from DH parameters
 [R,s] = DH_Rs(data.man(i).DH,qm(i),data.man(i).type);
 %Compute joint homogeneous transformation matrix
 TJ(1:4,1:4,i+1)=TJ(1:4,1:4,i)*[R,s;zeros(1,3),1];
 %Compute link homogeneous transformation matrix
 TL(1:4,1:4,i)=TJ(1:4,1:4,i+1)*[eye(3),-data.man(i).b; zeros(1,3),
1]; %homog trans matrix of last link
end
%End-Effector
TEE = TJ(1:4,1:4,n+1); %3x3 rotation matrix plus 3x1 translation vector
describing position of EE

%--- Rotation matrices, translation, position and other geometry
vectors ---%
%Pre-allocate rotation matrices, translation and position vectors
RJ=zeros(3,3,n);
RL=zeros(3,3,n);
r=zeros(3,n);
l=zeros(3,n);
%Pre-allocate axis
e=zeros(3,n);
%Pre-allocate other gemotery vectors
g=zeros(3,n);
%Format Rotation matrices, link positions, joint axis and other
geometry
%vectors
for i=1:n
 RJ(1:3,1:3,i)=TJ(1:3,1:3,i);
 RL(1:3,1:3,i)=TL(1:3,1:3,i);
 r(1:3,i)=TL(1:3,4,i);
 e(1:3,i)=RJ(1:3,3,i);
 l(1:3,i)=TJ(1:3,4,i);
 g(1:3,i)=r(1:3,i)-l(1:3,i);
end

%--- Twist-propagtaion matrix ---%
%Pre-allocate Bij
Bij=zeros(6,6,n,n);
%Compute Bij
for j=1:n
 for i=1:n
 Bij(1:6,1:6,i,j)=[eye(3), zeros(3,3); SkewSym(r(1:3,j)-
r(1:3,i)), eye(3)];
 end
end
%Pre-allocate Bi0

 121

Bi0=zeros(6,6,n);
%Compute Bi0
for i=1:n
 Bi0(1:6,1:6,i)=[eye(3), zeros(3,3); SkewSym(r0-r(1:3,i)), eye(3)];
end

%--- Twist-Propagation vector ---%
%Pre-allocate
pm=zeros(6,n);
%Base-spacecraft
P0=[R0,zeros(3,3); zeros(3,3), eye(3)];
%Fordward recursion to obtain the Twist-Propagation vector
for i=1:n
 if data.man(i).type==0
 %Revolute joint
 pm(1:6,i)=[e(1:3,i);cross(e(1:3,i),g(1:3,i))];
 else
 %Prismatic joint
 pm(1:6,i).p=[zeros(3,1);e(1:3,i)];
 end
end

%--- Generalized twist vector ---%
%Pre-Allocate
tm=zeros(6,n);
%Base-spacecraft
t0=P0*q0dot;
%First link
tm(1:6,1)=Bi0(1:6,1:6,1)*t0+pm(1:6,1)*qmdot(1);
%Fordward recursion to obtain the twist vector
for i=2:n
 tm(1:6,i)=Bij(1:6,1:6,i,i-1)*tm(1:6,i-1)+pm(1:6,i)*qmdot(i);
end

end

 122

THIS PAGE INTENTIONALLY LEFT BLANK

 123

APPENDIX G. DH_RS.M

% This function computes the rotation matrix R and the translation
vector s
% between two joints given their Denavit-Hartenber (DH) parameters.
% Developed by Dr. Josep Virgili-Llop

function [R,s] = DH_Rs(DH,qm,type)
%
% Inputs:
% DH -> Denavit-Hartenberg parameters.
% DH.d -> Distance between joint origins along the joint z-axis.
% DH.theta -> Rotation between x-axis along the joint z-axis.
% DH.alpha -> Rotation between z-axis.
% DH.a -> Distance between the commaon normal between the z-axis.
% qm -> Joint variable.
% type -> type==0 for revolute joint or type==1 for prismatic joints.
%
% Outputs:
% R -> Rotation 3x3 matrix.
% s -> Translation 3x1 vector.

%=== LICENSE ===%

%=== CODE ===%

%Assign the d and theta variable depending on joint type
if type==0
 %Revolute joint
 theta=qm;
 d=DH.d;
else
 %Prismatic joint
 theta=Dh.theta;
 d=qm;
end

%Rotation matrix
R = [
 cos(theta), -sin(theta)*cos(DH.alpha), sin(theta)*sin(DH.alpha);
 sin(theta), cos(theta)*cos(DH.alpha), -cos(theta)*sin(DH.alpha);
 0, sin(DH.alpha), cos(DH.alpha)
];

%Translation vector
s = [DH.a*cos(theta), DH.a*sin(theta), d]';

end

 124

THIS PAGE INTENTIONALLY LEFT BLANK

 125

APPENDIX H. SKEWSYM.M

% SkewSym.m computes the skewsymmetric matrix of a vector
% Developed by Dr. Josep Virgili-Llop

function [x_skew] = SkewSym(x)

x_skew=[0 -x(3) x(2) ; x(3) 0 -x(1) ; -x(2) x(1) 0];

end

 126

THIS PAGE INTENTIONALLY LEFT BLANK

 127

APPENDIX I. MARSMAN_KINCAL.M

%MARSMAN_KinCal.m calibrates the kinematic model based on actually
measured end effector
%positions

%Developed by Dr. Josep Virgili-Llop and CPT Jerry Drew

% Inputs:
% q -> measured angular positions of each joint
% delta_a -> induced variation in DH.a
% delta_theta -> induced variation in DH.theta
% delta_q -> induced variation in joint position
% delta_x -> induced variation in x direction displacement
% DH -> Denavit-Hartenberg parameters.
% DH.d -> Distance between joint origins along the joint z-axis.
% DH.theta -> Rotation between x-axis along the joint z-axis.
% DH.alpha -> Rotation between z-axis.
% DH.a -> Distance between the commaon normal between the z-axis.
% EE_Eul_Ang -> angular component of vector from origin of inertial
frame to end
% effector, scalar (rad)
% Eps -> convergence error tolerance for calibration
% I -> inertia of manipulator links
% qm -> Joint variable.
% mass -> mass of manipulator links (kg)
% PHI -> kinematic calibration matrix
% r_EE_x -> x component of vector from origin of inertial frame to
end
% effector, scalar (m)
% r_EE_y -> y component of vector from origin of inertial frame to
end
% effector, scalar (m)
% RBJ1 -> rotation matrix about z of joint 1 with respect to the base
% theta_base_J1 -> angular displacement of base with respect to joint
1
% (inertial frame)
% type -> type==0 for revolute joint or type==1 for prismatic joints.
% x_base_J1 -> displacement of base with respect to joint 1 in x
% direction (inertial frame)
% y_base_J1 -> displacement of base with respect to joint 1 in y
% direction (inertial frame)
%
% Outputs:
% Delta_Zeta_Direct -> matrix containing computed variations between
% measured and actual DH parameters

clc
clear
close all

 128

%Load Data
load ('Kinematic_Data/Calibration_data_March3.mat')
load ('Kinematic_Data/Vicon_MARSMAN_CAL_20160303T111525.mat')

%--- Prepare data ---%
q_meas=q;
q_meas(3:4,:) = []; %Remove unwanted measurements
q=[]; %Delete this variable as it is going to be used later on.

%--- Define manipulator data ---%

%Number of joints/links
data.n=4;

%First joint
data.man(1).type=0;
data.man(1).DH.d = 0;
data.man(1).DH.alpha = 0;
data.man(1).DH.a = .39; %length from joint(i) to joint(i+1), meters
data.man(1).b = [data.man(1).DH.a/2;0;0];
data.man(1).mass=2.88;
data.man(1).I=eye(3)*0.04;
data.man(1).q0=0;

%Second joint
data.man(2)=data.man(1);

%Third joint
data.man(3)=data.man(1);

%Fourth joint
data.man(4)=data.man(1);

%Base to first link data (initial guess)
theta_base_J1 = 0;
x_base_J1 = 0.2;
y_base_J1 = 0;

%First joint location with respect to base
RBJ1=[cos(theta_base_J1) -sin(theta_base_J1) 0; %Rotation matrix
about z
 sin(theta_base_J1) cos(theta_base_J1) 0;
 0 0 1];
data.base.T_L0_J1=[RBJ1,[x_base_J1;y_base_J1;0];zeros(1,3),1];

%Base-spacecraft inertia matrix
data.base.mass=12;
data.base.I=eye(3)*0.22;

%--- LSQ Parameters ---%
Eps = 0.01; % convergence error tolerance

 129

Delta_Zeta_Direct = 2*Eps;
%Variations
delta_d = 1e-3; %Distance variation
delta_theta = deg2rad(.01); %Angle variation

%Initial guess on joint offsets
for j=1:size(q_meas,1)
 for i=1:data.n
 q(j,i)=q_meas(j,i)+data.man(i).q0;
 end
end

%--- Iterative Batch LSQ ---%
while max(abs(Delta_Zeta_Direct)) > Eps;

 %Nominal Values
 [rEE_x, rEE_y, rEE_theta] = x_EE(q0_meas, q, data); % kinematic
model estimate of end effector state

 %--- Derivatives for DH.a for all links except the last one ---%
 %It is assumed that all links have the same length (except the last
one)
 %Copy Manipulator data
 data_var=data;
 %Change DH.a
 for i = 1:data.n-1
 data_var.man(i).DH.a = data.man(i).DH.a + delta_d;
 end
 %Values with varied parameters
 [rEE_x_delta, rEE_y_delta, rEE_theta_delta] = x_EE(q0_meas, q,
data_var); % compute position of EE under variation
 %Partial derivatives matrix
 PHI(:,1) = [((rEE_x_delta - rEE_x)/delta_d)'; ((rEE_y_delta -
rEE_y)/delta_d)'; (rEE_theta_delta(:)-rEE_theta(:))/delta_d];

 %--- Derivatives for DH.a for the last link ---%
 %Copy Manipulator data
 data_var=data;
 %Change DH.a
 data_var.man(end).DH.a = data.man(end).DH.a + delta_d;
 %Values with varied parameters
 [rEE_x_delta, rEE_y_delta, rEE_theta_delta] = x_EE(q0_meas, q,
data_var); % compute position of EE under variation
 %Partial derivatives matrix
 PHI(:,2) = [((rEE_x_delta - rEE_x)/delta_d)'; ((rEE_y_delta -
rEE_y)/delta_d)'; (rEE_theta_delta(:)-rEE_theta(:))/delta_d];

 %--- Derivatives with respect to Base to First Joint parameters ---
%

 %Angle
 data_var=data;
 theta_base_J1_var = theta_base_J1 + delta_theta;

 130

 RBJ1=[cos(theta_base_J1_var) -sin(theta_base_J1_var) 0; %Resets
RBJ1 to baseline
 sin(theta_base_J1_var) cos(theta_base_J1_var) 0;
 0 0 1];

 data_var.base.T_L0_J1(1:3,1:3)=RBJ1;
 %Values with varied parameters
 [rEE_x_delta, rEE_y_delta, rEE_theta_delta] = x_EE(q0_meas, q,
data_var); % compute position of EE under variation
 %Partial derivatives matrix
 PHI(:,3) = [((rEE_x_delta - rEE_x)/delta_theta)'; ((rEE_y_delta -
rEE_y)/delta_theta)'; (rEE_theta_delta(:)-rEE_theta(:))/delta_theta];

 %X position of first joint
 data_var=data;
 data_var.base.T_L0_J1(1,4)=x_base_J1 + delta_d;
 %Values with varied parameters
 [rEE_x_delta, rEE_y_delta, rEE_theta_delta] = x_EE(q0_meas, q,
data_var); % compute position of EE under variation
 %Partial derivatives matrix
 PHI(:,4) = [((rEE_x_delta - rEE_x)/delta_d)'; ((rEE_y_delta -
rEE_y)/delta_d)'; (rEE_theta_delta(:)-rEE_theta(:))/delta_d];

 %X position of first joint
 data_var=data;
 data_var.base.T_L0_J1(2,4)=y_base_J1 + delta_d;
 %Values with varied parameters
 [rEE_x_delta, rEE_y_delta, rEE_theta_delta] = x_EE(q0_meas, q,
data_var); % compute position of EE under variation
 %Partial derivatives matrix
 PHI(:,5) = [((rEE_x_delta - rEE_x)/delta_d)'; ((rEE_y_delta -
rEE_y)/delta_d)'; (rEE_theta_delta(:)-rEE_theta(:))/delta_d];

 %Joint angle Offsets
 for i = 2:data.n
 data_var=data;
 data_var.man(i).q0=data_var.man(i).q0+delta_theta;
 q_var=q;
 for j=1:size(q_meas,1)
 q_var(j,i)=q_meas(j,i)+data_var.man(i).q0;
 end
 %Values with varied parameters
 [rEE_x_delta, rEE_y_delta, rEE_theta_delta] = x_EE(q0_meas,
q_var, data_var); % compute position of EE under variation
 %Partial derivatives matrix
 PHI(:,i+5-1) = [((rEE_x_delta - rEE_x)/delta_theta)';
((rEE_y_delta - rEE_y)/delta_theta)'; (rEE_theta_delta(:)-
rEE_theta(:))/delta_theta];
 end

 %---- Create Delta_x ---%
 x_n = [rEE_x' ; rEE_y'; rEE_theta'];
 x_m = [EE_meas(:,1); EE_meas(:,2); EE_meas(:,3)];
 Delta_x = x_m - x_n;

 131

 %--- Solve LSQ ---%
 Delta_Zeta_Direct = inv(PHI'*PHI)*PHI'*Delta_x;

 %--- Update parameters ---%
 %Update links lengths
 for i = 1:data.n-1
 data.man(i).DH.a = data.man(i).DH.a + Delta_Zeta_Direct(1);
 end
 data.man(end).DH.a = data.man(end).DH.a + Delta_Zeta_Direct(2);
 %Update position of first joint w.r.t base
 theta_base_J1 = theta_base_J1+ Delta_Zeta_Direct(3);
 x_base_J1 = x_base_J1 + Delta_Zeta_Direct(4);
 y_base_J1 = y_base_J1 + Delta_Zeta_Direct(5);
 RBJ1=[cos(theta_base_J1) -sin(theta_base_J1) 0;
 sin(theta_base_J1) cos(theta_base_J1) 0;
 0 0 1];
 data.base.T_L0_J1=[RBJ1,[x_base_J1;y_base_J1;0];zeros(1,3),1];
 %Joint offsets
 for i = 2:data.n
 data.man(i).q0=data.man(i).q0+Delta_Zeta_Direct(5+i-1);
 end
 for j=1:size(q_meas,1)
 for i=1:data.n
 q(j,i)=q_meas(j,i)+data.man(i).q0;
 end
 end

end

%--- Print Results ---%
for i = 1:data.n
 fprintf('Link %i DH a: %f m\n',i,data.man(i).DH.a);
end
for i = 1:data.n
 fprintf('Link %i Joint Offset: %f
deg\n',i,rad2deg(data.man(i).q0));
end
fprintf('L0 to J1 parameters [x,y,theta]: %f m, %f m, %f
deg.\n',x_base_J1,y_base_J1,rad2deg(theta_base_J1));

%--- Print Residuals ---%
fprintf('\n');
%Compute kineamtics with last iteration
[rEE_x, rEE_y, rEE_theta] = x_EE(q0_meas, q, data);
%Compute residuals (mean and std)
x_res=(rEE_x'-EE_meas(:,1));
y_res=(rEE_y'-EE_meas(:,2));
pos_res = sqrt(x_res.^2+y_res.^2);
fprintf('position residuals [mean,std]: %f, %f
m.\n',mean(pos_res),std(pos_res));
%Compute residuals (mean and std)

 132

theta_res=(rEE_theta'-EE_meas(:,3));
fprintf('theta residuals [mean,std]: %f, %f
deg.\n',rad2deg(mean(theta_res)),rad2deg(std(theta_res)));

%---Update b vector ---%
for i = 1:data.n
 data.man(i).b = [data.man(i).DH.a/2;0;0];
end

%--- Save manipulator Data (ready for dynamic calibration) ---%
save('KinCal_ManData','data');

 133

APPENDIX J. X_EE.M

%Comupte the state of the end-effector according to the kinematic model
and
%the joint states (base and manipulator joints).

% Developed by Dr. Josep Virgili-Llop and CPT Jerry Drew

function [rEE_x, rEE_y, rEE_theta] = x_EE(q0_meas, q, data)

%Iterate throught the different states
for i = 1:length(q)

 %Base rotation matrix
 R0=[cos(q0_meas(i,3)) -sin(q0_meas(i,3)) 0;
 sin(q0_meas(i,3)) cos(q0_meas(i,3)) 0;
 0 0 1];

 %Base position
 r0=[q0_meas(i,1); %translation in x
 q0_meas(i,2); %translation in y
 0]; %translation in z

 %Joint variables
 qm = q(i,:); %manipulator joint states [m x n] where m is the
number of measurements taken and n is the number of links

 %--- Compute Kinematics, Dynamics, ID, and FD ---%

 %Kinematics

[~,~,~,~,~,~,~,~,~,~,~,TEE]=Kinematics_Serial(R0,r0,qm,zeros(6,1),zeros
(data.n,1),data);
 rEE_theta(i) = dcm2angle(TEE(1:3,1:3)'); %orientations of EE wrt
inertial frame
 rEE_x(1,i) = TEE(1,4);
 rEE_y(1,i) = TEE(2,4);

end

 134

THIS PAGE INTENTIONALLY LEFT BLANK

 135

APPENDIX K. MARSMAN_DYNCAL.M

% Performs the dynamic calibration based upon the dynamic model,
% measurement data, and the results of the kinematic calibration.

% Developed by Dr. Josep Virgili-Llop and CPT Jerry Drew

% Inputs:
% delta_d -> distance variation of b vector
% delta_m -> mass variation (kg)
% delta_I -> inertia variation (kg*m^2)
% Delta_x -> difference between measured and nominal base angular
position
% Eps -> convergence error tolerance for calibration
% qm1 -> joint positions before maneuver
% qm2 -> joint positions after maneuver
% q01 -> state (x,y,theta) of base before maneuver
% q02 -> state (x,y,theta) of base after maneuver
% q0_px -> nominal (predicted) x value of base from dynamic model
% q0_py -> nominal (predicted) y value of base from dynamic model
% q0_ptheta -> nominal (predicted) theta value of base from dynamic
model
% xEE1 -> end effector state before maneuver
% xEE2 -> end effector state after maneuver
% x_m -> measured theta value of base
% x_n -> nominal (predicted) theta value of base from dynamic model
% (q0_ptheta')
% I -> inertia of manipulator links
% PHI -> dynamic calibration matrix

% Outputs:
% Delta_Zeta_Direct -> matrix containing parameter variations with
% respect to the nominal values (Siciliano, p.
89);
% the solution to the iterative least-squares
% problem

clc
clear
close all

%Load Data
load ('KinCal_ManData.mat') %loads results from kinematic calibration

for i = 1:15

 load (sprintf('DynCal_Data/qmat%i.mat',i)) % loads telemetry joint
measurements
 load (sprintf('DynCal_Data/Man_%i.mat',i)) % loads VICON base and
EE measurements

 %Initial guess on joint offsets

 136

 for j=1:size(q,1)
 for k=1:data.n
 q(j,k)=q(j,k)+data.man(k).q0; % accounts for offsets
determined by kinematic calibration
 end
 end

 maneuver(i).q01 = q0_meas (1,1:3); % state (x,y,theta) of base at
beginning of maneuver
 maneuver(i).q02 = q0_meas (2,1:3); % state (x,y,theta) of base at
end of maneuver
 maneuver(i).qm1 = q (1,:); % joint positions before maneuver
 maneuver(i).qm2 = q (2,:); % joint positions after maneuver
 maneuver(i).xEE1 = EE_meas (1,1:3); % end effector state before
maneuver
 maneuver(i).xEE2 = EE_meas (2,1:3); % end effector state after
maneuver

end

maneuver([6,7,8,15])=[];
maneuver([4,8,10,11])=[];

%--- LSQ Parameters ---%
Eps = 0.01; % convergence error tolerance
Delta_Zeta_Direct = 2*Eps;
%Variations
delta_d = 1e-3; % Distance variation of b vector
delta_m = 1e-3; % Mass variation (kg)
delta_I = 1e-5; % Inertia variation (kg*m^2)

%--- Iterative Batch LSQ ---%
while max(abs(Delta_Zeta_Direct)) > Eps;

 %Nominal Values
 [q0_px, q0_py, q0_ptheta] = q0_maneuver(maneuver, data); % nominal
(predicted) values from dynamic model

 %--- Derivatives for DH.I for all links ---%
 %Copy Manipulator data
 data_var=data;
 %Change DH.I
 for i = 1:data.n
 data_var.man(i).I(3,3) = data.man(i).I(3,3) + delta_I; %
changing z component of Inertia matrix (in local frame)
 end
 %Values with varied parameters
 [q0_px_delta, q0_py_delta, q0_ptheta_delta] = q0_maneuver(maneuver,
data_var);
 PHI(:,1) = [((q0_ptheta_delta - q0_ptheta)/delta_I)'];

 137

% %--- Derivatives for DH.I for the last link ---%
% %Copy Manipulator data
% data_var=data;
%
% data_var.man(end).I(3,3) = data.man(end).I(3,3) + delta_I;
%
% %Values with varied parameters
% [q0_px_delta, q0_py_delta, q0_ptheta_delta] =
q0_maneuver(maneuver, data_var);
% PHI(:,2) = [((q0_ptheta_delta - q0_ptheta)/delta_I)'];

 %---- Create Delta_x ---%
 x_n = q0_ptheta';
 for i=1:length(maneuver)
 x_mx(i,1)=maneuver(i).q02(1);
 x_my(i,1)=maneuver(i).q02(2);
 x_mtheta(i,1)=maneuver(i).q02(3);
 end
 x_m = x_mtheta;
 Delta_x = wrapToPi(x_m - x_n);

 %--- Solve LSQ ---%
 Delta_Zeta_Direct = inv(PHI'*PHI)*PHI'*Delta_x;

 %--- Update parameters ---%
 %Update links Inertia
 for i = 1:data.n
 data.man(i).I(3,3) = data.man(i).I(3,3) +
Delta_Zeta_Direct(1)/10;
 end

end

%--- Print Results ---%
for i = 1:data.n
 fprintf('Link %i I: %f kg m^2\n',i,data.man(i).I(3,3));
end
for i = 1:data.n
 fprintf('Link %i b: %f m\n',i,data.man(i).b(1));
end

%--- Print Residuals ---%
fprintf('\n');
%Compute kineamtics with last iteration
[q0_px, q0_py, q0_ptheta] = q0_maneuver(maneuver, data);
%Compute residuals (mean and std)
x_n = q0_ptheta';
q0_theta_res= rad2deg(wrapToPi(x_m - x_n));
fprintf('position residuals [mean,std]: %f, %f
deg.\n',mean(q0_theta_res),std(q0_theta_res));

 138

%--- Save manipulator Data (ready for dynamic calibration) ---%
save('DynCal_ManData','data');

 139

APPENDIX L. I_I.M

% Converts the inertias in local frame to inertia in the inertial
frame.
% Developed by Dr. Josep Virgili-Llop

function [I0,Im]=I_I(R0,RL,data)
% Input ->
% R0 -> Rotation matrix from the base-spacecraft to the inertial
frame.
% RL -> Links 3x3 rotation matrices.
% data.n -> Manipulator number of joints and links.
% data.man -> Manipulator data.
% data.man(i).I -> Link inertia.
% Output ->
% I0 -> Base-spacecraft inertia in inertial frame.
% Im -> Manipulator inertia in inertial frame.

%=== LICENSE ===%

%=== CODE ===%

%Base-spacecraft inertia
I0 = R0*data.base.I;
%Pre-allocate inertias
Im=zeros(3,3,data.n);
%Inertias of the links
for i=1:(data.n)
 Im(1:3,1:3,i)=RL(1:3,1:3,i)*data.man(i).I*RL(1:3,1:3,i)';
end

end

 140

THIS PAGE INTENTIONALLY LEFT BLANK

 141

APPENDIX M. MCB_SERIAL.M

% Computes the Mass Composite Body matrix of a Serial Manipulator.
% Developed by Dr. Josep Virgili-Llop

function [M0_tilde,Mm_tilde]=MCB_Serial(I0,Im,Bij,Bi0,data)
% Input ->
% I0 -> Base-spacecraft inertia in inertial frame.
% Im -> Manipulator inertia in inertial frame.
% Bij -> Twist-propagation matrix (for manipulator i>0 and j>0).
% Bi0 -> Twist-propagation matrix (for i>0 and j=0).
% data.base -> Base-spacecraft data
% data.base.mass -> Base-spacecraft mass.
% data.man -> Manipulator data.
% data.man.n -> Manipulator number of joints and links.
% data.man(i).mass -> Link mass.
% Output ->
% M0_tilde -> Base-spacecraft mass matrix of composite body.
% Mm_tilde -> Manipulator mass matrix of composite body.

%=== LICENSE ===%

%=== CODE ===%
%Number of links and Joints
n=data.n;
%Pre-allocate
Mm_tilde=zeros(6,6,n);
%Initialize M tilde
Mm_tilde(1:6,1:6,n)=[Im(1:3,1:3,n),zeros(3,3);zeros(3,3),data.man(n).ma
ss*eye(3)];
%Backwards recursion
for i=n-1:-1:1

Mm_tilde(1:6,1:6,i)=[Im(1:3,1:3,i),zeros(3,3);zeros(3,3),data.man(i).ma
ss*eye(3)]+Bij(1:6,1:6,i+1,i)'*Mm_tilde(1:6,1:6,i+1)*Bij(1:6,1:6,i+1,i)
;
end
%Base-spacecraft M tilde
M0_tilde=[I0,zeros(3,3);zeros(3,3),data.base.mass*eye(3)]+Bi0(1:6,1:6,1
)'*Mm_tilde(1:6,1:6,1)*Bi0(1:6,1:6,1);

end

 142

THIS PAGE INTENTIONALLY LEFT BLANK

 143

APPENDIX N. GIM_SERIAL.M

% Computes the Generalized Inertia Matrix of a Serial Manipulator.
% Developed by Dr. Josep Virgili-Llop

function [H0, H0m, Hm] =
GIM_Serial(M0_tilde,Mm_tilde,Bij,Bi0,P0,pm,data)
%
% Input ->
% M0_tilde -> Base-spacecraft mass matrix of composite body.
% Mm_tilde -> Manipulator mass matrix of composite body.
% Bij -> Twist-propagation matrix (for manipulator i>0 and j>0).
% Bi0 -> Twist-propagation matrix (for i>0 and j=0).
% P0 -> Base-spacecraft twist-propagation vector.
% pm -> Manipulator twist-propagation vector.
% data -> Manipulator data.
% data.n -> Manipulator number of joints and links.
%
% Output ->
% H0 -> Base-spacecraft inertia matrix.
% H0m -> Base-spacecraft - manipulator coupling inertia matrix.
% Hm -> Manipulator inertia matrix.

%=== LICENSE ===%

%=== CODE ===%

%--- Number of links and Joints ---%
n=data.n;

%--- H Martix ---%
%Base-spacecraft Inertia matrix
H0 = P0'*M0_tilde*P0;
%Pre-allocate Hm
Hm=zeros(n,n);
%Manipulator Inertia matrix Hm
for j=1:n
 for i=j:n

Hm(i,j)=pm(1:6,i)'*Mm_tilde(1:6,1:6,i)*Bij(1:6,1:6,i,j)*pm(1:6,j);
 Hm(j,i)=Hm(i,j);
 end
end
%Pre-allocate H0m
H0m=zeros(6,n);
%Coupling Inertia matrix
for i=1:n
 H0m(1:6,i)=(pm(1:6,i)'*Mm_tilde(1:6,1:6,i)*Bi0(1:6,1:6,i)*P0)';
end

end

 144

THIS PAGE INTENTIONALLY LEFT BLANK

 145

APPENDIX O. Q_DOT_FUN.M

% Computes time derivatives of the base-spacecraft state vector (q_dot)
% Developed by Dr. Josep Virgili-Llop

function [q_dot] = q_dot_fun(t,q,qmdot,maneuver,data)
%
% Inputs:
% Bij -> Twist-propagation matrix (for manipulator i>0 and j>0).
% Bi0 -> Twist-propagation matrix (for i>0 and j=0).
% H0 -> Base-spacecraft inertia matrix.
% H0m -> Base-spacecraft - manipulator coupling inertia matrix.
% Hm -> Manipulator inertia matrix.
% I0 -> Base-spacecraft inertia in inertial frame.
% Im -> Manipulator inertia in inertial frame.
% M0_tilde -> Base-spacecraft mass matrix of composite body.
% Mm_tilde -> Manipulator mass matrix of composite body.
% P0 -> Base-spacecraft twist-propagation vector.
% pm -> Manipulator twist-propagation vector.
% R0 -> Rotation matrix from the base-spacecraft to the inertial
frame.
% r0 -> Position of the base-spacecraft to the inertial frame.
%
% Outputs:
% q_dot -> derivative of the state vector of the spacecraft base and
% manipulator joints, of the form [q0_dot;qm_dot]

%--- Derivative of qm ---%
q_dot(4:3+data.n)=qmdot;

%--- Derivative of q0 ---%
%Base rotation matrix
R0=[cos(maneuver.q01(3)) -sin(maneuver.q01(3)) 0;
 sin(maneuver.q01(3)) cos(maneuver.q01(3)) 0;
 0 0 1];

%Base position
r0=[maneuver.q01(1); %translation in x
 maneuver.q01(2); %translation in y
 0]; %translation in z

%Kinematics
[~,RL,~,~,~,~,~,Bij,Bi0,P0,pm,~]=Kinematics_Serial(R0,r0,q(4:end),zeros
(6,1),zeros(data.n,1),data);
%Inertias
[I0,Im]=I_I(R0,RL,data);
%Mass Composite Body matrix
[M0_tilde,Mm_tilde]=MCB_Serial(I0,Im,Bij,Bi0,data);
%Generalized Inertia matrix
[H0, H0m, ~] = GIM_Serial(M0_tilde,Mm_tilde,Bij,Bi0,P0,pm,data);

 146

q0_dot= -inv(H0) * H0m * qmdot';
q_dot(1:3) = q0_dot([4,5,3]);

q_dot=q_dot(:);

end

 147

APPENDIX P. Q0_MANEUVER.M

% q0_maneuver.m predicts the coordinates of the base's position in the
inertial frame by
% integrating the joint velocities.
%
% Developed by Dr. Josep Virgili-Llop and CPT Jerry Drew
%
% Inputs:
% maneuver -> structure containing position data of base, joints, and
% end effector before and after maneuver
% data -> structure containing number of links, DH parameters, mass,
% inertias, types of joints, and initial state vector of the
% system
%
% Outputs:
% q0_px -> nominal position data of base and joints (x coordinates)
% q0_py -> nominal position data of base and joints (y coordinates)
% q0_theta -> nominal position data of base and joints (theta
coordinates)

function [q0_px, q0_py, q0_ptheta] = q0_maneuver(maneuver,data)

Delta_t=5.0;

for i = 1:length(maneuver)

 qmdot = (maneuver(i).qm2-maneuver(i).qm1)/Delta_t; %assume
denominator is t = 1

 ode_deriv=@(t,q)q_dot_fun(t,q,qmdot,maneuver(i),data); % q=[q0,qm]
 options = odeset('RelTol',1e-12,'AbsTol',1e-12);
 [t,q0]=ode45(ode_deriv,[0:1e-
3:Delta_t],[maneuver(i).q01,maneuver(i).qm1],options);

 q0_px(i)=q0(end,1);
 q0_py(i)=q0(end,2);
 q0_ptheta(i)=q0(end,3);

end

end

 148

THIS PAGE INTENTIONALLY LEFT BLANK

 149

LIST OF REFERENCES

[1] M. Oda, K. Kibe, and F. Yamagata, “ETS-VII, space robot in-orbit experiment
satellite,” in Proc. IEEE International Conference on Robotics and Automation
(ICRA), Minneapolis, 1996, vol. 1, pp. 739–744.

[2] A. Ogilvie, J. Allport, M. Hannah, and J. Lymer, “Autonomous satellite servicing
using the Orbital Express demonstration manipulator system,” in Proc. 9th
International Symposium on Artificial Intelligence, Robotics, and Automation in
Space (i-SAIRAS’08), Los Angeles, CA, 2008, pp. 25–29.

[3] M. J. Mataric, The Robotics Primer, Cambridge, MA: MIT Press, 2007.

[4] K. Shamaei, Y. Che, A. Murali, S. Sen, S. Patil, K. Goldberg, and A. M.
Okamura, “A paced shared-control teleoperate architecture for supervised
automation of multilateral surgical tasks,” in Proc. 2015 IEEE Intelligent Robots
and Systems (IROS),Hamburg, Germany, 2015, pp. 1434–1439.

[5] L. G. Torres, A. Kuntz, H. B. Gilbert, P. J. Swaney, R. J. Hendrick, R. J. Webster,
and R. Alterovitz, “A motion planning approach to automatic obstacle avoidance
during concentric rube robot teleoperation,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), Seattle, WA, 2015, pp. 2361–
2367.

[6] S. Vozar, S. Leonard, P. Kazanzides, and L. L. Whitcomb, “Experimental
evaluation of force control for virtual-fixture-assisted teleoperation for on-orbit
manipulation of satellite thermal blanket insulation,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA), Seattle, WA, 2015, pp. 4424–
4431

[7] Rethink Robotics. “Baxter with Intera 3.” [Online]. Available:
http://www.rethinkrobotics.com/baxter. Accessed Apr. 14, 2016.

[8] J. Long, The Great Courses: Robotics, Chantilly, VA: The Teaching Company,
2015.

[9] A. Murali, S. Sen, B. Kehoe, A. Garg, S. McFarland, S. Patil, W. D. Boyd, S.
Lim, and P. Abbeel, K. Goldberg, “Learning by observation for surgical subtasks:
multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms,” in
2015 International Conference on Robotics and Automation (ICRA), Seattle, WA
2015, pp. 1202–1209.

[10] Canadian Space Agency. “Canadarm.” [Online]. Available: http://www.asc-
csa.gc.ca/eng/canadarm/. Accessed Apr. 13, 2016.

150

[11] Canadian Space Agency. “Historic first moves,” [Online]. Available:
http://www.asc-csa.gc.ca/eng/canadarm/beginning.asp. Accessed April 14, 2016.

[12] K. McBryan and D. Akin, “Mission overview of the dynamic manipulator flight
experiment (DYMAFLEX): a nanosatellite test bed to study coupled dynamics
between a robotic arm and an equivalently-sized small host vehicle in the space
environment,” in 63rd International Astronautical Congress, Turin, Italy, 2012.

[13] K. Yoshida, “Experimental study of the dynamics and control of a space robot
with experimental free-floating robot satellite (EFFORTS) simulators,” in
Advanced Robotics, Japan, VSP and Robotics Society of Japan, 1995, pp. 583–
602.

[14] M. Wilde, M. Romano, and A. Fleischner, “Historical review of spacecraft
formation flight, docking, and space robot manipulation simulators,” in
preparation for publication.

[15] K. Machida, T. Yoshitsugu, and T. Iwata, “Maneuvering and manipulation of
flying space telerobotics system,” in 1992 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Raleigh, NC, 1992, vol.1, pp. 3–10.

[16] Deutsches Zentrum für Luft- und Raumfahrt (DLR), “ROTEX (1993),” [Online].
Available: http://www.dlr.de/rmc/rm/en/desktopdefault.aspx/tabid-
3827/5969_read-8744. Accessed Apr. 14, 2016.

[17] Japan Aerospace Exploration Agency, “About Engineering Test Satellite VII
‘KIKU-7 (ETS-VII),” [Online]. Available:
http://global.jaxa.jp/projects/sat/ets7/index.html. Accessed Apr. 14, 2016.

[18] I. Kawano, M. T. Suzuki, H. Koyama, and M. Kunugi, “Approach trajectory
design for autonomous rendezvous of ETS-VII,” Journal of the Japan Society for
Aeronautical and Space Sciences, 2001, vol. 49, no. 575, pp. 432–437.

[19] N. D’Amore and D. Akin, “Space manipulator control for the DYMAFLEX flight
experiment,” Air Force Office of Scientific Research, Arlington, VA, Tech. Rep.
AFRL-OSR-VA-TR-2013-0468, Sep. 2013.

[20] D. Alvarez, “Design, integration, and test of a modular spacecraft-based robotic
manipulator link,” M.S. thesis, Dept. Astro. Eng., Naval Postgraduate School,
Monterey, CA, 2014.

[21] P. Boning, M. Ono, T. Nohara, and S. Dubowsky, “An experimental study on the
control of space robot teams assembling large flexible structures,” in Proc. 9th
International Symposium on Artificial Intelligence, Robotics, and Automation in
Space (i-SAIRAS’12), Montreal, Canada.

151

[22] X. Wei, S. Fuchun, and L. Huaping, “Design and development of a ground
experiment system with free-flying robot,” in Proc. 6th Conference on Industrial
Electronics and Applications (ICIEA), Beijing, China, 2011, pp. 2101–2016.

[23] J. Virgili-Llop, J. Drew, and M. Romano, “Spacecraft robotics toolkit: an open-
source simulator for spacecraft robotic arm dynamic modeling and control,”
presented at 6th International Conference on Astrodynamics Tools and
Techniques (ICATT), Darmstadt, Germany, 2016.

[24] J. Virgili-Llop and J. Drew. “SPAcecraft robotics toolkit (SPART).” [Online].
Available: https://github.com/NPS-SRL. Accessed Feb. 23, 2016.

[25] Harmonic Drive LLC. “HD LLC ASCII interface programmer’s guide.”
[Online]. Available: www.harmonicdrive.net/_hd/.../ASCII-PROGRAMMERS-
GUIDE.pdf. Accessed Mar. 18, 2016.

[26] Futek Inc. “Futek model TFF400.” [Online]. Available:
http://www.futek.com/files/pdf/Product%20Drawings/tff400.pdf. Accessed Jan.
4, 2016].

[27] Inspired Energy. “Battery specification, document number and revision:
DSNH2054HD31 [Online]. Available: http://www.inspired-
energy.com/standard_products/NH2054/NH2054.htm. Accessed Apr. 4, 2016.

[28] Traco Power. “DC/DC converters, TEP 75WI, 75W.” [Online]. Available:
http://www.tracopower.com/products/tep75wi.pdf. Accessed Apr. 4, 2016.

[29] Copley Controls. “Software documents, CME – setup & indexing.” [Online].
Available: http://www.copleycontrols.com/Motion/Downloads/software.html.
Accessed Apr. 4, 2016.

[30] Futek Inc. “Futek wiring codes,” [Online]. Available:
http://www.futek.com/code_wire.aspx. Accessed Jan. 19, 2016.

[31] Arduino Inc. “Arduino Due” [Online]. Available:
https://www.arduino.cc/en/Main/ArduinoBoardDue. Accessed Apr. 4, 2016.

[32] LinkSprite. “RS232 shield V2 for Arduino.” [Online]. Available:
http://store.linksprite.com/rs232-shield-v2-for-arduino/. Accessed Apr. 4, 2016.

[33] Sparkfun Inc. “SparkFun load cell amplifier–HX711.” [Online]. Available:
https://www.sparkfun.com/products/13230. Accessed Jan. 12, 2016.

[34] N. Seidle. “Sparkfun_HX711_Load_Cell_v10.” [Online]. Available:
https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/SparkFun_HX711_Load_
Cell_v10.pdf. Accessed Jan. 21, 2016.

152

[35] Arduino Inc. “Arduino Wi-Fi shield.” [Online]. Available:
https://www.arduino.cc/en/Main/ArduinoWiFiShield. Accessed Jan. 12, 2016.

[36] Adafruit. “5V 1.5A linear voltage regulator -7805 TO-220.” Available:
https://www.adafruit.com/products/2164. Accessed Apr. 22, 2016.

[37] Harmonic Drive LLC. “DEP.” [Online]. Available:
http://www.harmonicdrive.net/products/servo-drives/dc-bus/dep. Accessed Apr.
21, 2016.

[38] All About Circuits. “Wiring color codes,” [Online]. Available:
http://www.allaboutcircuits.com/textbook/reference/chpt-2/wiring-color-codes.
Accessed Apr. 21, 2016.

[39] Harmonic Drive LLC. “FHA mini series servo actuators.” [Online]. Available:
http://www.harmonicdrive.net/_hd/content/catalogs/pdf/fha-c-miniture-ac100v-
200v.pdf. Accessed Apr. 21, 2016.

[40] Sparkfun. “RS-232 vs. TTL serial communication,” [Online]. Available:
https://www.sparkfun.com/tutorials/215. Accessed Apr. 22, 2016.

[41] Harmonic Drive LLC. “Digital servo drive for brushless or brush motors, DEP
Series,” [Online]. Available:
http://www.harmonicdrive.net/_hd/content/documents/dep-series.pdf. Accessed
Apr. 22, 2016.

[42] R. Zappula, J. Virgili-Llop, H. Park, and M. Romano, “Experiments on
autonomous spacecraft rendezvous and docking using an artificial potential field
approach,” presented at AAS/AIAA Space Flight Mechanics Meeting, Napa, CA,
2016.

[43] V. Gite. “What is the difference between UDP and TCP internet protocols?”
[Online]. Available: http://www.cyberciti.biz/faq/key-differences-between-tcp-
and-udp-protocols. Accessed Apr. 25, 2016.

[44] J. Virgili-Llop, J. Drew, and M. Romano, “Design and parameter identification by
laboratory experiments of a prototype modular robotic arm for orbiting spacecraft
applications,” presented at 6th International Conference on Astrodynamics Tools
and Techniques (ICATT), Darmstadt, Germany, 2016.

[45] VICON. “Datastream SDK.” [Online]. Available:
http://www.vicon.com/products/software/datastream-sdk. Accessed Apr. 6, 2016.

[46] J. Diebel. “Representing attitude: Euler angles, unit quaternions, and rotation
vectors.” [Online], Available:
http://www.swarthmore.edu/NatSci/mzucker1/e27/diebel2006attitude.pdf.
Accessed Apr. 25, 2016.

153

[47] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modeling,
Planning, and Control, London, England: Springer, 2010.

[48] J. Virgili-Llop, M. Wilde, M. Romano, “A detailed tutorial on the modeling of
orbiting spacecraft with an on-board robotic manipulator,” accepted for
presentation at AIAA SPACE and Astronautics Forum and Exposition, Long
Beach, CA, 2016.

[49] J. Virgili-Llop, J. Drew, and M. Romano, “Autonomous capture of an object by a
spacecraft with a modular robotic am: analysis, simulation, and experiments,” in
preparation for publication, 2016.

[50] Yale University. “Yale OpenHand project.” [Online]. Available:
http://www.eng.yale.edu/grablab/openhand. Accessed Mar. 23, 2016.

[51] Github Inc. “An Arduino library to interface the Avia Semiconductor HX711 24-
bit analog-to-digital converter (ADC) for weight scales,” [Online]. Available:
https://github.com/bogde/HX711. Accessed Jan. 21, 2016.

154

THIS PAGE INTENTIONALLY LEFT BLANK

155

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

